Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(5): 1319-1329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38104888

RESUMO

In response to the growing ethical and environmental concerns associated with animal testing, numerous in vitro tools of varying complexity and biorelevance have been developed and adopted in pharmaceutical research and development. In this work, we present one of these tools, i.e., the Meso-fluidic Chip for Permeability Assessment (MCPA), for the first time. The MCPA combines an artificial barrier (PermeaPad®) with an organ-on-chip device (MIVO®) and real-time automated concentration measurements, to yield a sustainable, yet effortless method for permeation testing. The system offers three major physiological aspects, i.e., a biomimetic membrane, an optimal membrane interfacial area-to-donor-volume-ratio (A/V) and a physiological flow on the acceptor/basolateral side, which makes the MPCA an ideal candidate for mechanistic studies and excellent in vivo bioavailability predictions. We validated the method with a handful of assorted drug compounds in unstirred and stirred donor conditions, before exploring its applicability as a tool for dissolution/permeation testing on a BCS class III/I drug (pyrazinamide) crystalline adducts and BCS class II/IV (hydrocortisone) amorphous solid dispersions. The results were highly reproducible and clearly displayed the method's potential for evaluating the performance of enabling formulations, and possibly even predicting in vivo performance. We believe that, upon further development, the MCPA will serve as a useful in vitro tool that could push sustainability into pharmaceutics by refining, reducing and replacing animal testing in early-stage drug development.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Animais , Solubilidade , Composição de Medicamentos/métodos , Permeabilidade , Biofarmácia
2.
Eur J Pharm Sci ; 189: 106559, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544334

RESUMO

In order to solubilize poorly soluble active pharmaceutical ingredients, various strategies have been implemented over the years, including the use of nanocarriers, such as cyclodextrins and liposomes. However, improving a drug's apparent solubility does not always translate to enhanced bioavailability. This work aimed to investigate to which extent complexation with cyclodextrins and incorporation into liposomes influence drug in vitro permeability and to find a mechanistic description of the permeation process. For this purpose, we investigated hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and phosphatidylcholine liposomes formulations of three chemically diverse compounds (atenolol, ketoprofen and hydrocortisone). We studied drug diffusion of the formulations by UV-localized spectroscopy and advanced data fitting to extract parameters such as diffusivity and bound-/free drug fractions. We then correlated this information with in vitro drug permeability obtained with the novel PermeaPadⓇ barrier. The results showed that increased concentration of HP-ß-CD leads to increased solubilization of the poorly soluble unionized ketoprofen, as well as hydrocortisone. However, this net increment of apparent solubility was not proportional to the increased flux measured. On the other hand, normalising the flux over the empirical free drug concentration, i.e., the free fraction, gave a meaningful absolute permeability coefficient. The results achieved for the liposomal formulation were consistent with the finding on cyclodextrins. In conclusion, we proved the adequacy and usefulness of our method for calculating free drug fractions in the examined enabling formulations, supporting the validity of the established drug diffusion/permeation theory that the unbounded drug fraction is the main driver for drug permeation across a membrane.


Assuntos
Ciclodextrinas , Cetoprofeno , beta-Ciclodextrinas , Ciclodextrinas/química , Lipossomos/química , 2-Hidroxipropil-beta-Ciclodextrina , beta-Ciclodextrinas/química , Cetoprofeno/química , Hidrocortisona/química , Permeabilidade
3.
Gels ; 9(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37232954

RESUMO

Rising environmental awareness drives green consumers to purchase sustainable cosmetics based on natural bioactive compounds. The aim of this study was to deliver Rosa canina L. extract as a botanical ingredient in an anti-aging gel using an eco-friendly approach. Rosehip extract was first characterized in terms of its antioxidant activity through a DPPH assay and ROS reduction test and then encapsulated in ethosomal vesicles with different percentages of ethanol. All formulations were characterized in terms of size, polydispersity, zeta potential, and entrapment efficiency. Release and skin penetration/permeation data were obtained through in vitro studies, and cell viability was assessed using an MTT assay on WS1 fibroblasts. Finally, ethosomes were incorporated in hyaluronic gels (1% or 2% w/v) to facilitate skin application, and rheological properties were studied. Rosehip extract (1 mg/mL) revealed a high antioxidant activity and was successfully encapsulated in ethosomes containing 30% ethanol, having small sizes (225.4 ± 7.0 nm), low polydispersity (0.26 ± 0.02), and good entrapment efficiency (93.41 ± 5.30%). This formulation incorporated in a hyaluronic gel 1% w/v showed an optimal pH for skin application (5.6 ± 0.2), good spreadability, and stability over 60 days at 4 °C. Considering sustainable ingredients and eco-friendly manufacturing technology, the ethosomal gel of rosehip extract could be an innovative and green anti-aging skincare product.

4.
Eur J Pharm Biopharm ; 178: 168-178, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36029937

RESUMO

The correlation between in vivo and in vitro data is yet not sufficiently optimized to allow a significant reduction and replacement of animal testing in pharmaceutical development. One of the main reasons for this lies in the poor mechanistic understanding and interpretation of the physical mechanisms enabling formulation rely on for deploying the drug. One mechanism that still lacks a proper interpretation is the kinetics of drug release from nanocarriers. In this work, we investigate two different types of classical enabling formulations - i) cyclodextrin solutions and ii) liposomal dispersions - by a combination of an experimental method (i.e. UV-Vis localized spectroscopy) and mathematical modelling/numerical data fitting. With this approach, we are able to discriminate precisely between the amount of drug bound to nanocarriers or freely dissolved at any time point; in addition, we can precisely estimate the binding and diffusivity constants of all chemical species (free drug/bound drug). The results obtained should serve as the first milestone for the further development of reliable in vitro/in silico models for the prediction of in vivo drug bioavailability when enabling formulations are used.


Assuntos
Ciclodextrinas , Água , Animais , Ciclodextrinas/química , Difusão , Cinética , Lipossomos/química , Água/química
5.
Int J Pharm ; 608: 121116, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34555476

RESUMO

The process of passive drug absorption from the gastrointestinal tract is still poorly understood and modelled. Additionally, the rapidly evolving field of pharmaceutics demands efficient, affordable and reliable in vitro tools for predicting in vivo performance. In this work, we combined established methods for quantifying drug diffusivity (localized UV-spectroscopy) and permeability (Permeapad® plate) in order to gain a better understanding of the role of unstirred water layers (UWLs) in drug absorption. The effect of diffusion/permeability media composition and viscosity on the apparent permeation resistance (Rapp) of model drugs caffeine (CAF) and hydrocortisone (HC) were tested and evaluated by varying the type and concentration of viscosity-enhancing agent - glycerol or a poly(ethylene glycol) (PEG) with different average molecular weights. For all types of media, increased viscosity lead to reduction in diffusivity but could not alone explain the observed effect, which was attributed to intermolecular polymer-drug interactions. Additionally, for both drugs, smaller hydrophilic viscosity-enhancing agents (glycerol and PEG 400) had larger influence than larger ones (PEG 3350 and 6000). The results highlighted the role of UWL as an additive barrier to permeation and indicated that diffusion through UWL is the rate-limiting step to CAF's permeation, whilst HC permeability is a partition-driven process.


Assuntos
Compreensão , Preparações Farmacêuticas , Difusão , Interações Hidrofóbicas e Hidrofílicas , Absorção Intestinal , Permeabilidade
6.
Int J Pharm ; 592: 120100, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33227374

RESUMO

The objective of this work was to develop and characterize solid lipid nanoparticle (SLN)-loaded mucoadhesive films to reveal their potential as successful drug formulations. SLNs based on lipid (Lipoid S100) and surfactant (polysorbate 80) were prepared using the solvent-injection method, and their properties examined using experimental designs. Further, the marker coumarin 6 (C6) was solubilized in the particles as a model for a lipophilic drug. Lipid and surfactant concentrations influenced the particle size, while C6 had minor impact. The particle size distribution was narrow and the storage stability satisfactory for 4 months (4 ℃). The incorporation of the nanoparticles into a film matrix consisting of HPMC and glycerol, increased film thickness and flexibility, and slightly decreased the mechanical strength. The mucin interaction and disintegration time of the films were unimpaired. Film uniformity was satisfactory. Solubilisation in SLNs reduced the rate and extent of permeation of C6 through a monolayer of mucus-producing HT29-MTX cells. When the particles were incorporated into the mucoadhesive film, this effect was compensated for. In conclusion, this project was a first step in the successful development of an SLN-loaded mucoadhesive film formulation and served its purpose in revealing the formulation's uniformity, mucoadhesiveness and biocompatibility.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Administração Bucal , Lipídeos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA