Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1456524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290503

RESUMO

The oviduct plays a crucial role in the reproductive process, serving as the stage for fertilization and the early stages of embryonic development. When the environment of this organ has been mimicked, it has been shown to enhance in vitro embryo epigenetic reprogramming and to improve the yield of the system. This study explores the anatomical intricacies of two oviduct regions, the uterotubal junction (UTJ) and the ampullary-isthmic junction (AIJ) by using micro-computed tomography (MicroCT). In this study, we have characterized and 3D-reconstructed the oviduct structure, by measuring height and width of the oviduct's folds, along with the assessments of fractal dimension, lacunarity and shape factor. Results indicate distinct structural features in UTJ and AIJ, with UTJ displaying small, uniformly distributed folds and high lacunarity, while AIJ shows larger folds with lower lacunarity. Fractal dimension analysis reveals values for UTJ within 1.189-1.1779, while AIJ values range from 1.559-1.770, indicating differences in structural complexity between these regions. Additionally, blind sacs or crypts are observed, akin to those found in various species, suggesting potential roles in sperm sequestration or reservoir formation. These morphological differences align with functional variations and are essential for developing an accurate 3D model. In conclusion, this research provides information about the oviduct anatomy, leveraging MicroCT technology for detailed 3D reconstructions, which can significantly contribute to the understanding of geometric-morphological characteristics influencing functional traits, providing a foundation for a biomimetic oviduct-on-a-chip.

2.
Int J Mol Sci ; 25(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39337455

RESUMO

The rising incidence of metabolic diseases is linked to elevated blood glucose levels, contributing to conditions such as diabetes and promoting the accumulation of advanced glycation end products (AGEs). AGEs, formed by non-enzymatic reactions between sugars and proteins, build up in tissues and are implicated in various diseases. This article explores the relationship between glycemic control and AGE accumulation, focusing on fertility implications. A computational model using network theory was developed, featuring a molecular database and a network with 145 nodes and 262 links, categorized as a Barabasi-Albert scale-free network. Three main subsets of nodes emerged, centered on glycemic control, fertility, and immunity, with AGEs playing a critical role. The transient receptor potential vanilloid 1 (TRPV1), a receptor expressed in several tissues including sperm, was identified as a key hub, suggesting that the modulation of TRPV1 in sperm by AGEs may influence fertility. Additionally, a novel link between glycemic control and immunity was found, indicating that immune cells may play a role in endocytosing specific AGEs. This discovery underscores the complex interplay between glycemic control and immune function, with significant implications for metabolic, immune health, and fertility.


Assuntos
Fertilidade , Produtos Finais de Glicação Avançada , Controle Glicêmico , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Canais de Cátion TRPV/metabolismo , Glicemia/metabolismo
3.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124920

RESUMO

Here, we report for the first time on the mechanisms of action of the essential oil of Ruta graveolens (REO) against the plant pathogen Colletotrichum gloeosporioides. In particular, the presence of REO drastically affected the morphology of hyphae by inducing changes in the cytoplasmic membrane, such as depolarization and changes in the fatty acid profile where straight-chain fatty acids (SCFAs) increased by up to 92.1%. In addition, REO induced changes in fungal metabolism and triggered apoptosis-like responses to cell death, such as DNA fragmentation and the accumulation of reactive oxygen species (ROS). The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, ß-galactosidase, ß-glucosidase, and N-acetyl-ß-glucosaminidase, was significantly reduced in the presence of REO. In addition, C. gloeosporioides activated naphthol-As-BI phosphohydrolase as a mechanism of response to REO stress. The data obtained here have shown that the essential oil of Ruta graveolens has a strong antifungal effect on C. gloeosporioides. Therefore, it has the potential to be used as a surface disinfectant and as a viable replacement for fungicides commonly used to treat anthracnose in the postharvest testing phase.


Assuntos
Antifúngicos , Colletotrichum , Óleos Voláteis , Espécies Reativas de Oxigênio , Ruta , Colletotrichum/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ruta/química , Antifúngicos/farmacologia , Antifúngicos/química , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/microbiologia , Testes de Sensibilidade Microbiana , Fragmentação do DNA/efeitos dos fármacos
4.
Theriogenology ; 226: 236-242, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941949

RESUMO

In mammalian ovaries, most follicles do not ovulate and are eliminated by atresia, which primarily depends on granulosa cell (GC) apoptosis. Autophagy is an alternative mechanism involved in follicle depletion in mammals through independent or tandem action with apoptosis. However, follicular autophagy has not yet been investigated in sheep; therefore, the present study aimed to investigate the involvement of autophagy in atresia among a pool of growing antral follicles in ewe ovaries. The abundance of the autophagic marker LC3B-II was determined using western blotting in GCs collected from ewe antral follicles. The antral follicles were classified as healthy or atretic based on morphological criteria and steroid measurements in follicular fluid (FF). Immunofluorescence and confocal microscopy analyses were performed on GCs to evaluate the presence of autophagic proteins and their subcellular localisation. Caspase-3 and DNA fragmentation were assessed using western blotting and TUNEL assays, respectively, in the same GC population to investigate the simultaneous apoptosis. The novel results of this study demonstrated enhanced LC3B-II protein expression in GCs of atretic follicles compared to that of healthy ones (1.3-fold increase; P = 0.0001, ANOVA), indicating a correlation between autophagy enhancement in GCs and antral follicular atresia. Autophagy, either functioning independently or in tandem with apoptosis, may be involved in the atresia of growing antral follicles in ewe ovaries because atretic GCs also showed high levels of apoptotic markers. The findings of this study might have important implication on scientific understanding of ovarian follicle dynamics.


Assuntos
Autofagia , Atresia Folicular , Células da Granulosa , Feminino , Animais , Atresia Folicular/fisiologia , Ovinos/fisiologia , Autofagia/fisiologia , Células da Granulosa/fisiologia , Ovário , Folículo Ovariano/fisiologia , Apoptose
5.
Foods ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540850

RESUMO

The antimicrobial activity of Origanum vulgare var. hirtum (O) and Coridothymus capitatus (C) essential oils (EOs) and hydrolates (HYs) of the same botanical species was evaluated on sixteen L. monocytogenes strains from food and clinical origins. The antimicrobial activity was assessed by Minimum Inhibitory Concentration (MIC) determination, viable cell enumeration over time up to 60 min, and evaluation of the cellular damage through Confocal Laser Scanning Microscope (CLSM) analysis. EOs exhibited antimicrobial activity with MIC values ranging from 0.3125 to 10 µL/mL. In contrast, HYs demonstrated antimicrobial effectiveness at higher concentrations (125-500 µL/mL). The effect of HYs was rapid after the contact with the cells, and the cell count reduction over 60 min of HY treatment was about 1.2-1.7 Log CFU/mL. L. monocytogenes cells were stressed by HY treatment, and red cell aggregates were revealed through CLSM observation. Moreover, the combinations of EOs and HYs had an additive antilisterial effect in most cases and allowed the concentration of use to be reduced, while maintaining or improving the antimicrobial effectiveness. The combined use of EOs and HYs can offer novel opportunities for applications, thereby enhancing the antimicrobial effectiveness and diminishing the concentration of use. This provides the added benefit of reducing toxicity and mitigating any undesirable sensory effects.

6.
Front Bioeng Biotechnol ; 11: 1260886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929185

RESUMO

Nowadays there is an increasing demand for assisted reproductive technologies due to the growth of infertility problems. Naturally, fertilization occurs in the oviduct, where the oviductal epithelial cells (OECs) secrete many molecules that affect the embryo's metabolism and protect it from oxidative stress. When the OECs are grown in 3D culture systems, they maintain a great part of their functional characteristics, making them an excellent model for in vitro fertilization (IVF) studies. In this work, we aimed to evaluate the suitability of different 3D-printing processes in conjunction with the corresponding set of commercially available biomaterials: extrusion-based processing using polylactic acid (PLA) and polycaprolactone (PCL) and stereolithography or digital-light processing using polyethylene-glycol-diacrylate (PEGDA) with different stiffness (PEGDA500, PEGDA200, PEGDA PhotoInk). All the 3D-printed scaffolds were used to support IVF process in a bovine embryo assay. Following fertilization, embryo development and quality were assessed in terms of cleavage, blastocyst rate at days 7 and 8, total cell number (TCN), inner cell mass/trophectoderm ratio (ICN/TE), and apoptotic cell ratio (ACR). We found a detrimental effect on cleavage and blastocyst rates when the IVF was performed on any medium conditioned by most of the materials available for digital-light processing (PEGDA200, PEGDA500). The observed negative effect could be possibly due to some leaked compound used to print and stabilize the scaffolds, which was not so evident however with PEGDA PhotoInk. On the other hand, all the extrusion-based processable materials did not cause any detrimental effect on cleavage or blastocyst rates. The principal component analysis reveals that embryos produced in presence of 3D-printed scaffolds produced via extrusion exhibit the highest similarity with the control embryos considering cleavage, blastocyst rates, TCN, ICN/TE and ACR per embryo. Conversely, all the photo-cross linkable materials or medium conditioned by PLA, lead to the highest dissimilarities. Since the use of PCL scaffolds, as well as its conditioned medium, bring to embryos that are more similar to the control group. Our results suggest that extrusion-based 3D printing of PCL could be the best option to be used for new IVF devices, possibly including the support of OECs, to enhance bovine embryo development.

7.
Int J Mol Sci ; 24(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240083

RESUMO

Amniotic membrane and amniotic fluid derived cells are regarded as a promising stem cell source for developing regenerative medicine techniques, although they have never been tested on male infertility diseases such as varicocele (VAR). The current study aimed to examine the effects of two distinct cell sources, human Amniotic Fluid Mesenchymal Stromal Cells (hAFMSCs) and amniotic epithelial cells (hAECs), on male fertility outcomes in a rat induced VAR model. To explain cell-dependent enhancement of reproductive outcomes in rats transplanted with hAECs and hAFMSCs, insights on testis morphology, endocannabinoid system (ECS) expression and inflammatory tissue response have been carried out alongside cell homing assessment. Both cell types survived 120 days post-transplantation by modulating the ECS main components, promoting proregenerative M2 macrophages (Mφ) recruitment and a favorable anti-inflammatory IL10 expression pattern. Of note, hAECs resulted to be more effective in restoring rat fertility rate by enhancing both structural and immunoresponse mechanisms. Moreover, immunofluorescence analysis revealed that hAECs contributed to CYP11A1 expression after transplantation, whereas hAFMSCs moved towards the expression of Sertoli cell marker, SOX9, confirming a different contribution into the mechanisms leading to testis homeostasis. These findings highlight, for the first time, a distinct role of amniotic membrane and amniotic fluid derived cells in male reproduction, thus proposing innovative targeted stem-based regenerative medicine protocols for remedying high-prevalence male infertility conditions such as VAR.


Assuntos
Infertilidade Masculina , Varicocele , Ratos , Masculino , Humanos , Animais , Células Epiteliais/metabolismo , Varicocele/terapia , Varicocele/metabolismo , Âmnio , Líquido Amniótico , Fertilidade , Infertilidade Masculina/metabolismo , Diferenciação Celular
8.
Animals (Basel) ; 13(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37106907

RESUMO

The preservation and enhancement of native breeds is a central issue to initiate new breeding policies, which are sustainable and adapted to climate changes. The aim of this study was the characterisation of the qualitative traits of milk and cheese obtained from Teramana goats compared with Saanen goats reared in the same breeding facilities or environment. The research involved 41 Teramana goats and 40 Saanen goats. The milk of each group was collected and used to produce cheese, which was analysed fresh and after 30 and 60 days of ripening. Cheese samples were subjected to evaluations of the physical parameters, including colour and the TPA test, in addition to chemical evaluations that were focused on the determination of total lipids, fatty acids composition, volatile profile and proteolysis. The results showed the Teramana goat to be rich in fat, characterised by a significant increase in conjugates of linoleic acid (CLA), which are attributed to important health benefits. The analysis of volatile compounds showed more oxidative stability of Teramana goats' cheeses during the ripening. The results from sensory analyses indicated an improved hardness and yellowness, which could be accompanied by an improvement in customer acceptance. In conclusion, our study shows interesting results regarding the milk and cheese from the Teramana goat, as well as a positive evaluation by consumers, findings that encourage the importance of promoting native breeds.

9.
Nutrients ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904236

RESUMO

Bone healing is a major clinical issue, especially in bone defects of critical dimensions. Some studies have reported in vivo positive effects on bone healing by some bioactive compounds, such as the phenolic derivatives found in vegetables and plants, such as resveratrol, curcumin, and apigenin. The aim of this work was (1) to analyze in vitro in human dental pulp stem cells the effects of these three natural compounds on the gene expression of related genes downstream to RUNX2 and SMAD5, key factor transcriptions associated with osteoblast differentiation, in order to better understand the positive effects that can occur in vivo in bone healing, and (2) to evaluate in vivo the effects on bone healing of critical-size defects in the calvaria in rats of these three nutraceuticals tested in parallel and for the first time administered by the gastric route. Upregulation of the RUNX2, SMAD5, COLL1, COLL4, and COLL5 genes in the presence of apigenin, curcumin, and resveratrol was detected. In vivo, apigenin induced more consistent significant bone healing in critical-size defects in rat calvaria compared to the other study groups. The study findings encourage a possible therapeutic supplementation with nutraceuticals during the bone regeneration process.


Assuntos
Curcumina , Ratos , Humanos , Animais , Resveratrol , Curcumina/farmacologia , Apigenina , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteogênese , Suplementos Nutricionais , Adjuvantes Imunológicos
10.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902221

RESUMO

Nowadays, the adoption of In Vitro Fertilization (IVF) techniques is undergoing an impressive increase. In light of this, one of the most promising strategies is the novel use of non-physiological materials and naturally derived compounds for advanced sperm preparation methods. Here, sperm cells were exposed during capacitation to MoS2/Catechin nanoflakes and catechin (CT), a flavonoid with antioxidant properties, at concentrations of 10, 1, 0.1 ppm. The results showed no significant differences in terms of sperm membrane modifications or biochemical pathways among the groups, allowing the hypothesis that MoS2/CT nanoflakes do not induce any negative effect on the parameters evaluated related to sperm capacitation. Moreover, the addition of CT alone at a specific concentration (0.1 ppm) increased the spermatozoa fertilizing ability in an IVF assay by increasing the number of fertilized oocytes with respect to the control group. Our findings open interesting new perspectives regarding the use of catechins and new materials obtained using natural or bio compounds, which could be used to implement the current strategies for sperm capacitation.


Assuntos
Catequina , Masculino , Suínos , Animais , Catequina/farmacologia , Molibdênio/metabolismo , Sêmen , Fertilização , Espermatozoides/metabolismo , Fertilização in vitro
11.
Sci Rep ; 13(1): 2716, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792916

RESUMO

To date, the impossibility of treating resistant forms of bacteria and fungi (AMR) with traditional drugs is a cause for global alarm. We have made the green synthesis of Argirium silver ultra nanoclusters (Argirium-SUNCs) very effective against resistant bacteria (< 1 ppm) and mature biofilm (0.6 ppm). In vitro and preclinical tests indicate that SUNCs are approximately 10 times less toxic in human cells than bacteria. Unique chemical-physical characteristics such as particle size < 2 nm, a core composed of Ag0, and a shell of Ag +, Ag2+ , Ag3+ never observed before in stable form in ultra pure water, explain their remarkable redox properties Otto Cars (Lancet Glob. Health 9:6, 2021). Here we show that Argirium-SUNCs have strong antimicrobial properties also against resistant Aspergillus niger GM31 mycelia and spore inactivation (0.6 ppm). The membrane depolarization is a primary target leading to cell death as already observed in bacteria. Being effective against both bacteria and fungi Argirium-SUNCs represent a completely different tool for the treatment of infectious diseases.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Aspergillus niger , Anti-Infecciosos/farmacologia , Oxirredução , Bactérias , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
12.
Front Vet Sci ; 10: 1281040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179329

RESUMO

Introduction: Tendon disorders present significant challenges in the realm of musculoskeletal diseases, affecting locomotor activity and causing pain. Current treatments often fall short of achieving complete functional recovery of the tendon. It is crucial to explore, in preclinical research, the pathways governing the loss of tissue homeostasis and its regeneration. In this context, this study aimed to establish a correlation between the unbiased locomotor activity pattern of CRL:CD1 (ICR) mice exposed to uni- or bilateral Achilles tendon (AT) experimental injuries and the key histomorphometric parameters that influence tissue microarchitecture recovery. Methods: The study involved the phenotyping of spontaneous and voluntary locomotor activity patterns in male mice using digital ventilated cages (DVC®) with access to running wheels either granted or blocked. The mice underwent non-intrusive 24/7 long-term activity monitoring for the entire study period. This period included 7 days of pre-injury habituation followed by 28 days post-injury. Results and discussion: The results revealed significant variations in activity levels based on the type of tendon injury and access to running wheels. Notably, mice with bilateral lesions and unrestricted wheel access exhibited significantly higher activity after surgery. Extracellular matrix (ECM) remodeling, including COL1 deposition and organization, blood vessel remodeling, and metaplasia, as well as cytological tendon parameters, such as cell alignment and angle deviation were enhanced in surgical (bilateral lesion) and husbandry (free access to wheels) groups. Interestingly, correlation matrix analysis uncovered a strong relationship between locomotion and microarchitecture recovery (cell alignment and angle deviation) during tendon healing. Overall, this study highlights the potential of using mice activity metrics obtained from a home-cage monitoring system to predict tendon microarchitecture recovery at both cellular and ECM levels. This provides a scalable experimental setup to address the challenging topic of tendon regeneration using innovative and animal welfare-compliant strategies.

13.
Front Cell Dev Biol ; 10: 1015360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340025

RESUMO

MicroRNAs are small non-coding molecules that control several cellular functions and act as negative post-transcriptional regulators of the mRNA. While their implication in several biological functions is already known, an important role as regulators of different physiological and pathological processes in fertilization and embryo development is currently emerging. Indeed, miRNAs have been found in the oviductal fluid packaged within the extracellular vesicles, which might act as natural nanoshuttles by transporting lipids, proteins, RNA molecules and miRNAs from the oviduct to the gametes or embryos. Here, an exhaustive bibliography search was carried out, followed by the construction of a computational model based on the networks theory in an attempt to recreate and elucidate the pathways potentially activated by the oviductal miRNA. The omics data published to date were gathered to create the Oviductal MiRNome, in which the miRNA target genes and their interactions are represented by using stringApp and the Network analyzer from Cytoscape 3.7.2. Then, the hyperlinked nodes were identified to investigate the pathways in which they are involved using the gene ontology enrichment analysis. To study the phenotypical effects after the removal of key genes on the reproductive system and embryo, knockout mouse lines for every protein-coding gene were investigated by using the International Mouse Phenotyping Consortium database. The creation of the Oviductal MiRNome revealed the presence of important genes and their interactions within the network. The functional enrichment analysis revealed that the hyperlinked nodes are involved in fundamental cellular functions, both structural and regulatory/signaling, suggesting their implication in fertilization and early embryo development. This fact was as well evidenced by the effects of the gene deletion in KO mice on the reproductive system and embryo development. The present study highlights the importance of studying the miRNA profiles and their enormous potential as tools to improve the assisted reproductive techniques currently used in human and animal reproduction.

14.
Animals (Basel) ; 12(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35565617

RESUMO

Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional modification, called capacitation, in order to acquire their fertilizing ability. Since oviductal epithelial cells (SOECs) and progesterone (P4) are two major modulators of capacitation, here we investigated their impact on sperm functionality by using an IVF swine model. To that, we treated SOECs with P4 at 10, 100, and 1000 ng/mL before the coincubation with spermatozoa, thus finding that P4 at 100 ng/mL does not interfere with the cytoskeleton dynamics nor the cells' doubling time, but it promotes the sperm capacitation by increasing the number of spermatozoa per polyspermic oocyte (p < 0.05). Moreover, we found that SOECs pre-treatment with P4 100 ng/mL is able to promote an increase in the sperm fertilizing ability, without needing the hormone addition at the time of fertilization. Our results are probably due to the downregulation in the expression of OVGP1, SPP1 and DMBT1 genes, confirming an increase in the dynamism of our system compared to the classic IVF protocols. The results obtained are intended to contribute to the development of more physiological and efficient IVF systems.

15.
Microorganisms ; 10(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35630364

RESUMO

The increased resistance of bacteria to antimicrobials, as well as the growing interest in innovative and sustainable alternatives to traditional food additives, are driving research towards the use of natural food preservatives. Among these, hydrolates (HYs) have gained attention as "mild" alternatives to conventional antimicrobial compounds. In this study, the response of L. monocytogenes ATCC 7644 exposed to increasing concentrations of Coridothymus capitatus HY (CHY) for 1 h at 37 °C was evaluated by means of Phenotype Microarray, modelling the kinetic data obtained by inoculating control and treated cells into GEN III microplates, after CHY removal. The results revealed differences concerning the growth dynamics in environmental conditions commonly encountered in food processing environments (different carbon sources, pH 6.0, pH 5.0, 1-8% NaCl). More specifically, for treated cells, the lag phase was extended, the growth rate was slowed down and, in most cases, the maximum concentration was diminished, suggesting the persistence of stress even after CHY removal. Confocal Laser Scanner Microscopy evidenced a diffuse aggregation and suffering of the treated cells, as a response to the stress encountered. In conclusion, the treatment with HY caused a stressing effect that persisted after its removal. The results suggest the potential of CHY application to control L. monocytogenes in food environments.

16.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409054

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is a protein widely expressed in numerous cell types, with different biological roles mainly related to the renin-angiotensin system. Recently, ACE2 has been in the spotlight due to its involvement in the SARS-CoV-2 entry into cells. There are no data available regarding the expression of ACE2 and its short-ACE2 isoform at the protein level on human spermatozoa. Here, protein expression was demonstrated by western blot and the percentage of sperm displaying surface ACE2 was assessed by flow cytometry. Immunocytochemistry assays showed that full-length ACE2 was mainly expressed in sperm midpiece, while short ACE2 was preferentially distributed on the equatorial and post-acrosomal region of the sperm head. To our knowledge, this is the first study demonstrating the expression of protein ACE2 on spermatozoa. Further studies are warranted to determine the role of ACE2 isoforms in male reproduction.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , SARS-CoV-2 , Espermatozoides/metabolismo
17.
J Appl Microbiol ; 132(3): 1866-1876, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34800068

RESUMO

AIMS: This study aimed to evaluate the effectiveness of selected essential oils (EOs) and hydrolates (Hs) against Listeria monocytogenes biofilms on polystyrene (PS) and stainless steel (SS) surfaces. METHODS AND RESULTS: Among others, Origanum hirtum EO, Corydothymus capitatus EO and Citrus aurantium H were selected to treat L. monocytogenes biofilms during and after biofilm formation. Sub-minimum inhibitory concentrations (MICs) of C. capitatus EO (0.31 µl/ml) showed the highest inhibiting effect against biofilm formation on PS, while on SS no significant differences between the EOs were observed (43.7%-88.7% inhibition). Overall, the tested biosanitizers showed limited activity as biofilm removal agents. Although generally less effective, C. aurantium H exhibited good biofilm inhibition performance at 62.5 µl/ml, particularly on PS. Confocal laser scanning microscopy proved that sub-MICs of the biosanitizers drastically changed L. monocytogenes biofilm architecture, with bacterial cells elongation in the presence of C. capitatus EO. CONCLUSIONS: Our findings suggest that the tested EOs and H are able to control Listeria biofilms, particularly preventing biofilm formation on both materials. Considering its mild aroma and hydrophilicity, the H exhibited promising perspectives of application. SIGNIFICANCE AND IMPACT OF STUDY: This study raises the possibility of applying EOs and Hs to control biofilms on different surfaces in the food industry.


Assuntos
Listeria monocytogenes , Óleos Voláteis , Biofilmes , Microbiologia de Alimentos , Óleos Voláteis/farmacologia , Poliestirenos , Aço Inoxidável/análise
18.
Sci Rep ; 11(1): 22629, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799642

RESUMO

The current protocols of in vitro fertilization and culture in sheep rely on paradigms established more than 25 years ago, where Metaphase II oocytes are co-incubated with capacitated spermatozoa overnight. While this approach maximizes the number of fertilized oocytes, on the other side it exposes them to high concentration of reactive oxygen species (ROS) generated by active and degenerating spermatozoa, and positively correlates with polyspermy. Here we set up to precisely define the time frame during which spermatozoa effectively penetrates and fertilizes the oocyte, in order to drastically reduce spermatozoa-oocyte interaction. To do that, in vitro matured sheep oocytes co-incubated with spermatozoa in IVF medium were sampled every 30 min (start of incubation time 0) to verify the presence of a fertilizing spermatozoon. Having defined the fertilization time frame (4 h, data from 105 oocytes), we next compared the standard IVF procedures overnight (about 16 h spermatozoa/oocyte exposure, group o/nIVF) with a short one (4 h, group shIVF). A lower polyspermic fertilization (> 2PN) was detected in shIVF (6.5%) compared to o/nIVF (17.8%), P < 0.05. The o/nIVF group resulted in a significantly lower 2-cell stage embryos, than shIVF [34.6% (81/234) vs 50.6% (122/241) respectively, P < 0.001]. Likewise, the development to blastocyst stage confirmed a better quality [29% (70/241) vs 23.5% (55/234), shIVF vs o/nIVF respectively] and an increased Total Cell Number (TCN) in shIVF embryos, compared with o/n ones. The data on ROS have confirmed that its generation is IVF time-dependent, with high levels in the o/nIVF group. Overall, the data suggest that a shorter oocyte-spermatozoa incubation results in an improved embryo production and a better embryo quality, very likely as a consequence of a shorter exposure to the free oxygen radicals and the ensuing oxidative stress imposed by overnight culture.


Assuntos
Fertilização in vitro/veterinária , Oócitos/fisiologia , Técnicas de Reprodução Assistida/veterinária , Espermatozoides/fisiologia , Animais , Blastocisto , Meios de Cultura , Embrião de Mamíferos , Embriologia/métodos , Feminino , Fertilização , Técnicas de Maturação in Vitro de Oócitos , Masculino , Oócitos/citologia , Oxigênio , Espécies Reativas de Oxigênio , Preservação do Sêmen , Ovinos , Capacitação Espermática , Fatores de Tempo
19.
Sci Rep ; 11(1): 21557, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732754

RESUMO

This work highlights how our silver ultra nanoclusters (ARGIRIUM-SUNc) hand-made synthesized, are very useful as a bactericide and anti-biofilm agent. The Argirium-SUNc effective antibacterial concentrations are very low (< 1 ppm) as compared to the corresponding values reported in the literature. Different bacterial defense mechanisms are observed dependent on ARGIRIUM-SUNc concentrations. Biochemical investigations (volatilome) have been performed to understand the pathways involved in cell death. By using fluorescence techniques and cell viability measurements we show, for the first time, that membrane depolarization and calcium intracellular level are both primary events in bacteria death. The ARGIRIUM-SUNc determined eradication of different biofilm at a concentration as low as 0.6 ppm. This suggests that the effect of the nanoparticles follows a common mechanism in different bacteria. It is highly probable that the chemical constitution of the crosslinks could be a key target in the disrupting mechanism of our nanoparticles. Since the biofilms and their constituents are essential for bacterial survival in contact with humans, the silver nanoparticles represent a logical target for new antibacterial treatments.


Assuntos
Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Prata/química , Acinetobacter baumannii , Antibacterianos/farmacologia , Cálcio/farmacologia , Sobrevivência Celular , Enterobacter , Enterococcus faecium , Glutationa/química , Cinética , Klebsiella pneumoniae , Potenciais da Membrana , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanotecnologia , Pseudomonas aeruginosa , Espécies Reativas de Oxigênio , Staphylococcus aureus
20.
Front Microbiol ; 12: 736789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650537

RESUMO

In this study, nine Oenococcus oeni strains were tested for their ability to adhere to polystyrene using mMRS and wine as culture media. Moreover, planktonic and biofilm-detached cells were investigated for their influence on malic acid degradation kinetics and aroma compound production. Three strains were able to adhere on polystyrene plates in a strain-dependent way. In particular, MALOBACT-T1 and ISO359 strains mainly grew as planktonic cells, while the ISO360 strain was found prevalent in sessile state. The strain-dependent adhesion ability was confirmed by confocal laser scanning microscopy. Planktonic and biofilm detached cells showed a different metabolism. In fact, biofilm-detached cells had a better malic acid degradation kinetic and influenced the aroma composition of resulting wines, acting on the final concentration of esters, higher alcohols, and organic acids. Oenococcus oeni in biofilm lifestyle seems to be a suitable tool to improve malolactic fermentation outcome, and to contribute to wine aroma. The industrial-scale application of this strategy should be implemented to develop novel wine styles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA