Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 15(1): 68, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679823

RESUMO

BACKGROUND: Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts. METHODS: We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA). RESULTS: ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes. CONCLUSIONS: ClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.


Assuntos
Algoritmos , Genômica , Humanos , Estudos Prospectivos , Bases de Dados Factuais , Estudos de Associação Genética
2.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37463447

RESUMO

The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Metabolismo dos Lipídeos , Mutação , Complexo de Golgi/metabolismo , Lipídeos , Fenótipo , Proteínas de Ciclo Celular/metabolismo
3.
J Med Genet ; 59(12): 1227-1233, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36041817

RESUMO

BACKGROUND: Aminoacyl-tRNA synthetases (ARS) are key enzymes catalysing the first reactions in protein synthesis, with increasingly recognised pleiotropic roles in tumourgenesis, angiogenesis, immune response and lifespan. Germline mutations in several ARS genes have been associated with both recessive and dominant neurological diseases. Recently, patients affected with microcephaly, intellectual disability and ataxia harbouring biallelic variants in the seryl-tRNA synthetase encoded by seryl-tRNA synthetase 1 (SARS1) were reported. METHODS: We used exome sequencing to identify the causal variant in a patient affected by complex spastic paraplegia with ataxia, intellectual disability, developmental delay and seizures, but without microcephaly. Complementation and serylation assays using patient's fibroblasts and an Saccharomyces cerevisiae model were performed to examine this variant's pathogenicity. RESULTS: A de novo splice site deletion in SARS1 was identified in our patient, resulting in a 5-amino acid in-frame insertion near its active site. Complementation assays in S. cerevisiae and serylation assays in both yeast strains and patient fibroblasts proved a loss-of-function, dominant negative effect. Fibroblasts showed an abnormal cell shape, arrested division and increased beta-galactosidase staining along with a senescence-associated secretory phenotype (raised interleukin-6, p21, p16 and p53 levels). CONCLUSION: We refine the phenotypic spectrum and modes of inheritance of a newly described, ultrarare neurodevelopmental disorder, while unveiling the role of SARS1 as a regulator of cell growth, division and senescence.


Assuntos
Aminoacil-tRNA Sintetases , Deficiência Intelectual , Microcefalia , Serina-tRNA Ligase , Humanos , Aminoacil-tRNA Sintetases/genética , Ataxia , Senescência Celular/genética , Deficiência Intelectual/genética , Ligases , Microcefalia/genética , Paraplegia/genética , Saccharomyces cerevisiae/genética , Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo
4.
Brain ; 145(10): 3711-3722, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35325049

RESUMO

Sulphated proteoglycans are essential in skeletal and brain development. Recently, pathogenic variants in genes encoding proteins involved in the proteoglycan biosynthesis have been identified in a range of chondrodysplasia associated with intellectual disability. Nevertheless, several patients remain with unidentified molecular basis. This study aimed to contribute to the deciphering of new molecular bases in patients with chondrodysplasia and neurodevelopmental disease. Exome sequencing was performed to identify pathogenic variants in patients presenting with chondrodysplasia and intellectual disability. The pathogenic effects of the potentially causative variants were analysed by functional studies. We identified homozygous variants (c.1218_1220del and c.1224_1225del) in SLC35B2 in two patients with pre- and postnatal growth retardation, scoliosis, severe motor and intellectual disabilities and hypomyelinating leukodystrophy. By functional analyses, we showed that the variants affect SLC35B2 mRNA expression and protein subcellular localization leading to a functional impairment of the protein. Consistent with those results, we detected proteoglycan sulphation impairment in SLC35B2 patient fibroblasts and serum. Our data support that SLC35B2 functional impairment causes a novel syndromic chondrodysplasia with hypomyelinating leukodystrophy, most likely through a proteoglycan sulphation defect. This is the first time that SLC35B2 variants are associated with bone and brain development in human.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Homozigoto , Sequenciamento do Exoma , Proteoglicanas/genética , RNA Mensageiro , Transportadores de Sulfato/genética
5.
Neurology ; 98(9): e912-e923, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35012964

RESUMO

BACKGROUND AND OBJECTIVES: Genetic white matter disorders (GWMD) are of heterogeneous origin, with >100 causal genes identified to date. Classic targeted approaches achieve a molecular diagnosis in only half of all patients. We aimed to determine the clinical utility of singleton whole-exome sequencing and whole-genome sequencing (sWES-WGS) interpreted with a phenotype- and interactome-driven prioritization algorithm to diagnose GWMD while identifying novel phenotypes and candidate genes. METHODS: A case series of patients of all ages with undiagnosed GWMD despite extensive standard-of-care paraclinical studies were recruited between April 2017 and December 2019 in a collaborative study at the Bellvitge Biomedical Research Institute (IDIBELL) and neurology units of tertiary Spanish hospitals. We ran sWES and WGS and applied our interactome-prioritization algorithm based on the network expansion of a seed group of GWMD-related genes derived from the Human Phenotype Ontology terms of each patient. RESULTS: We evaluated 126 patients (101 children and 25 adults) with ages ranging from 1 month to 74 years. We obtained a first molecular diagnosis by singleton WES in 59% of cases, which increased to 68% after annual reanalysis, and reached 72% after WGS was performed in 16 of the remaining negative cases. We identified variants in 57 different genes among 91 diagnosed cases, with the most frequent being RNASEH2B, EIF2B5, POLR3A, and PLP1, and a dual diagnosis underlying complex phenotypes in 6 families, underscoring the importance of genomic analysis to solve these cases. We discovered 9 candidate genes causing novel diseases and propose additional putative novel candidate genes for yet-to-be discovered GWMD. DISCUSSION: Our strategy enables a high diagnostic yield and is a good alternative to trio WES/WGS for GWMD. It shortens the time to diagnosis compared to the classical targeted approach, thus optimizing appropriate management. Furthermore, the interactome-driven prioritization pipeline enables the discovery of novel disease-causing genes and phenotypes, and predicts novel putative candidate genes, shedding light on etiopathogenic mechanisms that are pivotal for myelin generation and maintenance.


Assuntos
Doenças do Sistema Nervoso Central , Exoma , Substância Branca , Sequência de Bases , Doenças do Sistema Nervoso Central/genética , Exoma/genética , Humanos , Substância Branca/patologia , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
6.
Front Psychiatry ; 12: 722378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658958

RESUMO

Fragile X syndrome (FXS) is the most frequent monogenic cause of autism or intellectual disability, and research on its pathogenetic mechanisms has provided important insights on this neurodevelopmental condition. Nevertheless, after 30 years of intense research, efforts to develop treatments have been mostly unsuccessful. The aim of this review is to compile evidence from existing research pointing to clinical, genetic, and therapeutic response heterogeneity in FXS and highlight the need of implementing precision medicine-based treatments. We comment on the high genetic and phenotypic heterogeneity present in FXS, as a contributing factor to the difficulties found during drug development. Given that several clinical trials have showed a non-negligeable fraction of positive responders to drugs targeting core FXS symptoms, we propose that success of clinical trials can be achieved by tackling the underlying heterogeneity in FXS by accurately stratifying patients into drug-responder subpopulations. These precision medicine-based approaches, which can be first applied to well-defined monogenic diseases such as FXS, can also serve to define drug responder profiles based on specific biomarkers or phenotypic features that can associate patients with different genetic backgrounds to a same candidate drug, thus repositioning a same drug for a larger number of patients with NDDs.

7.
Ann Neurol ; 90(6): 962-975, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606115

RESUMO

OBJECTIVE: The majority of patients with a familial cerebral small vessel disease (CSVD) referred for molecular screening do not show pathogenic variants in known genes. In this study, we aimed to identify novel CSVD causal genes. METHODS: We performed a gene-based collapsing test of rare protein-truncating variants identified in exome data of 258 unrelated CSVD patients of an ethnically matched control cohort and of 2 publicly available large-scale databases, gnomAD and TOPMed. Western blotting was used to investigate the functional consequences of variants. Clinical and magnetic resonance imaging features of mutated patients were characterized. RESULTS: We showed that LAMB1 truncating variants escaping nonsense-mediated messenger RNA decay are strongly overrepresented in CSVD patients, reaching genome-wide significance (p < 5 × 10-8 ). Using 2 antibodies recognizing the N- and C-terminal parts of LAMB1, we showed that truncated forms of LAMB1 are expressed in the endogenous fibroblasts of patients and trapped in the cytosol. These variants are associated with a novel phenotype characterized by the association of a hippocampal type episodic memory defect and a diffuse vascular leukoencephalopathy. INTERPRETATION: These findings are important for diagnosis and clinical care, to avoid unnecessary and sometimes invasive investigations, and also from a mechanistic point of view to understand the role of extracellular matrix proteins in neuronal homeostasis. ANN NEUROL 2021;90:962-975.


Assuntos
Doenças de Pequenos Vasos Cerebrais/genética , Hipocampo/diagnóstico por imagem , Laminina/genética , Leucoencefalopatias/genética , Transtornos da Memória/genética , Adulto , Idoso , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Exoma , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/diagnóstico por imagem , Pessoa de Meia-Idade , Fenótipo , Sistema de Registros
8.
Am J Hum Genet ; 108(11): 2195-2204, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34715011

RESUMO

Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.


Assuntos
Alelos , Pleiotropia Genética , Mitocôndrias/enzimologia , RNA Mitocondrial/genética , RNA de Transferência/genética , Ribonuclease P/genética , Adulto , Feminino , Humanos , Masculino , Linhagem
9.
Brain ; 144(9): 2659-2669, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34415322

RESUMO

Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life. Here we used whole exome or genome sequencing to identify 10 unrelated patients harbouring biallelic variants in PI4KA that caused a spectrum of conditions ranging from severe global neurodevelopmental delay with hypomyelination and developmental brain abnormalities to pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Functional analyses by western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells. In conclusion, we report a novel severe metabolic disorder caused by PI4KA malfunction, highlighting the importance of phosphoinositide signalling in human brain development and the myelin sheath.


Assuntos
Alelos , Variação Genética/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Antígenos de Histocompatibilidade Menor/genética , Transtornos do Neurodesenvolvimento/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Leucócitos Mononucleares/fisiologia , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Linhagem
10.
Nat Commun ; 12(1): 2558, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963192

RESUMO

GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/genética , Alelos , Sequência de Aminoácidos , Animais , Pré-Escolar , Deficiências do Desenvolvimento/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Feminino , Técnicas de Silenciamento de Genes , Ontologia Genética , Células HEK293 , Humanos , Mutação com Perda de Função , Masculino , Hipotonia Muscular/genética , Dissinergia Cerebelar Mioclônica/genética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Linhagem , Polimorfismo de Nucleotídeo Único , RNA-Seq , Ribonucleoproteínas Nucleares Pequenas/genética , Rigor Mortis/genética , Proteínas do Complexo SMN/metabolismo
11.
Ann Clin Transl Neurol ; 7(9): 1574-1579, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33245593

RESUMO

OBJECTIVE: To identify the genetic cause in an adult ovarioleukodystrophy patient resistant to diagnosis. METHODS: We applied whole-exome sequencing (WES) to a vanishing white matter disease patient associated with premature ovarian failure at 26 years of age. We functionally tested an intronic variant by RT-PCR on patient's peripheral blood mononuclear cells (PBMC) and by minigene splicing assay. RESULTS: WES analysis identified two novel variants in the EIF2B5 gene: c.725A > G (p.Tyr242Cys) and an intronic noncanonical mutation (c.1156 + 13G>A). This intronic mutation resulted into generation of various isoforms both in patient's PBMC and in the minigene splicing assay, showing that ~20% residual wild-type isoform is still expressed by the intronic-mutated allele alone, concordant with an hypomorphic effect of this variant. CONCLUSION: We report two novel variants in EIF2B5, one of them a noncanonical intronic splice variant, located at a +13 intronic position. This position is mutated only in 0.05% of ClinVar intronic mutations described so far. Furthermore, we illustrate how minigene splicing assay may be advantageous when validating splice-altering variants, in this case highlighting the coexistence of wild-type and mutated forms, probably explaining this patient's milder, late-onset phenotype.


Assuntos
Fator de Iniciação 2B em Eucariotos/genética , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/genética , Doenças Ovarianas/diagnóstico , Doenças Ovarianas/genética , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Sequenciamento do Exoma
14.
J Med Genet ; 57(12): 808-819, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32409512

RESUMO

INTRODUCTION: Pigmentary mosaicism (PM) manifests by pigmentation anomalies along Blaschko's lines and represents a clue toward the molecular diagnosis of syndromic intellectual disability (ID). Together with new insights on the role for lysosomal signalling in embryonic stem cell differentiation, mutations in the X-linked transcription factor 3 (TFE3) have recently been reported in five patients. Functional analysis suggested these mutations to result in ectopic nuclear gain of functions. MATERIALS AND METHODS: Subsequent data sharing allowed the clustering of de novo TFE3 variants identified by exome sequencing on DNA extracted from leucocytes in patients referred for syndromic ID with or without PM. RESULTS: We describe the detailed clinical and molecular data of 17 individuals harbouring a de novo TFE3 variant, including the patients that initially allowed reporting TFE3 as a new disease-causing gene. The 12 females and 5 males presented with pigmentation anomalies on Blaschko's lines, severe ID, epilepsy, storage disorder-like features, growth retardation and recognisable facial dysmorphism. The variant was at a mosaic state in at least two male patients. All variants were missense except one splice variant. Eleven of the 13 variants were localised in exon 4, 2 in exon 3, and 3 were recurrent variants. CONCLUSION: This series further delineates the specific storage disorder-like phenotype with PM ascribed to de novo TFE3 mutation in exons 3 and 4. It confirms the identification of a novel X-linked human condition associated with mosaicism and dysregulation within the mechanistic target of rapamycin (mTOR) pathway, as well as a link between lysosomal signalling and human development.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Epilepsia/genética , Deficiência Intelectual/genética , Transtornos da Pigmentação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/complicações , Epilepsia/patologia , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Masculino , Mosaicismo , Patologia Molecular/normas , Transtornos da Pigmentação/complicações , Transtornos da Pigmentação/patologia , Sequenciamento do Exoma , Adulto Jovem
15.
J Med Genet ; 57(2): 132-137, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31586945

RESUMO

BACKGROUND: Since 1994, over 50 families affected by the episodic ataxia type 1 disease spectrum have been described with mutations in KCNA1, encoding the voltage-gated K+ channel subunit Kv1.1. All of these mutations are either transmitted in an autosomal-dominant mode or found as de novo events. METHODS: A patient presenting with a severe combination of dyskinesia and neonatal epileptic encephalopathy was sequenced by whole-exome sequencing (WES). A candidate variant was tested using cellular assays and patch-clamp recordings. RESULTS: WES revealed a homozygous variant (p.Val368Leu) in KCNA1, involving a conserved residue in the pore domain, close to the selectivity signature sequence for K+ ions (TVGYG). Functional analysis showed that mutant protein alone failed to produce functional channels in homozygous state, while coexpression with wild-type produced no effects on K+ currents, similar to wild-type protein alone. Treatment with oxcarbazepine, a sodium channel blocker, proved effective in controlling seizures. CONCLUSION: This newly identified variant is the first to be reported to act in a recessive mode of inheritance in KCNA1. These findings serve as a cautionary tale for the diagnosis of channelopathies, in which an unreported phenotypic presentation or mode of inheritance for the variant of interest can hinder the identification of causative variants and adequate treatment choice.


Assuntos
Ataxia/genética , Discinesias/genética , Epilepsia/genética , Canal de Potássio Kv1.1/genética , Mioquimia/genética , Ataxia/diagnóstico , Ataxia/tratamento farmacológico , Ataxia/patologia , Canalopatias/diagnóstico , Canalopatias/tratamento farmacológico , Canalopatias/genética , Canalopatias/patologia , Criança , Pré-Escolar , Discinesias/diagnóstico , Discinesias/tratamento farmacológico , Discinesias/patologia , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Homozigoto , Humanos , Lactente , Recém-Nascido , Canal de Potássio Kv1.1/ultraestrutura , Masculino , Mutação/genética , Mioquimia/diagnóstico , Mioquimia/tratamento farmacológico , Mioquimia/patologia , Oxcarbazepina/administração & dosagem , Oxcarbazepina/efeitos adversos , Linhagem , Sequenciamento do Exoma
16.
Ann Clin Transl Neurol ; 7(1): 105-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31854126

RESUMO

OBJECTIVE: To identify causative mutations in a patient affected by ataxia and spastic paraplegia. METHODS: Whole-exome sequencing (WES) and whole-genome sequencing (WGS) were performed using patient's DNA sample. RT-PCR and cDNA Sanger sequencing were performed on RNA extracted from patient's fibroblasts, as well as western blot. RESULTS: A novel missense variant in SPG7 (c.2195T> C; p.Leu732Pro) was first found by whole-exome sequencing (WES), while the second, also unreported, deep intronic variant (c.286 + 853A>G) was identified by whole-genome sequencing (WGS). RT-PCR confirmed the in silico predictions showing that this variant activated a cryptic splice site, inducing the inclusion of a pseudoexon into the mRNA sequence, which encoded a premature stop codon. Western blot showed decreased SPG7 levels in patient's fibroblasts. INTERPRETATION: Identification of a deep intronic variant in SPG7, which could only have been detected by performing WGS, led to a diagnosis in this HSP patient. This case challenges the notion of an autosomal dominant inheritance for SPG7, and illustrates the importance of performing WGS subsequently or alternatively to WES to find additional mutations, especially in patients carrying one variant in a gene causing a predominantly autosomal recessive disease.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Marcha Atáxica/diagnóstico , Íntrons/genética , Metaloendopeptidases/genética , Paraplegia Espástica Hereditária/diagnóstico , Marcha Atáxica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Splicing de RNA , Paraplegia Espástica Hereditária/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
17.
J Med Genet ; 56(12): 846-849, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31004048

RESUMO

BACKGROUND: Alexander disease, an autosomal dominant leukodystrophy, is caused by missense mutations in GFAP. Although mostly diagnosed in children, associated with severe leukoencephalopathy, milder adult forms also exist. METHODS: A family affected by adult-onset spastic paraplegia underwent neurological examination and cerebral MRI. Two patients were sequenced by whole exome sequencing (WES). A candidate variant was functionally tested in an astrocytoma cell line. RESULTS: The novel variant in GFAP (Glial Fibrillary Acidic Protein) N-terminal head domain (p.Gly18Val) cosegregated in multiple relatives (LOD score: 2.7). All patients, even those with the mildest forms, showed characteristic signal changes or atrophy in the brainstem and spinal cord MRIs, and abnormal MRS. In vitro, this variant did not cause significant protein aggregation, in contrast to most Alexander disease mutations characterised so far. However, cell area analysis showed larger size, a feature previously described in patients and mouse models. CONCLUSION: We suggest that this variant causes variable expressivity and an attenuated phenotype of Alexander disease type II, probably associated with alternative pathogenic mechanisms, that is, astrocyte enlargement. GFAP analysis should be considered in adult-onset neurological presentations with pyramidal and bulbar symptoms, in particular when characteristic findings, such as the tadpole sign, are present in MRI. WES is a powerful tool to diagnose atypical cases.


Assuntos
Doença de Alexander/diagnóstico , Doença de Alexander/genética , Proteína Glial Fibrilar Ácida/genética , Adolescente , Adulto , Idoso , Doença de Alexander/diagnóstico por imagem , Doença de Alexander/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma , Adulto Jovem
18.
Ann Neurol ; 80(5): 741-753, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27666438

RESUMO

OBJECTIVE: Cerebral small vessel disease (cSVD) is a heterogeneous group of disorders. Screening of known cSVD genes identifies the causative mutation in <15% of familial cSVD cases. We sought to identify novel causes of cSVD. METHODS: We used linkage analysis and exome sequencing to identify the causal mutation in a French cSVD family. The identified candidate gene was then screened in 202 cSVD unrelated probands, including 1 proband from the first reported pontine autosomal dominant microangiopathy with leukoencephalopathy (PADMAL) family. Sanger sequencing was used to confirm variants in all mutated probands and analyze their segregation in probands' relatives. Mutation consequences were assessed with luciferase reporter assays and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: A candidate heterozygous variant located in a predicted miR-29 microRNA binding site, within the 3' untranslated region of COL4A1, was identified in the large French cSVD family. Five additional unrelated probands, including the PADMAL proband, harbored heterozygous variants in this microRNA binding site. Variants cosegregated with the affected phenotype, and cumulative logarithm of odds score reached 6.03, establishing linkage to this locus. A highly significant difference was observed when comparing the number of variants within this binding site in cases and controls (p = 1.77 × 10E-12). RT-qPCR analyses of patients' primary fibroblasts and luciferase reporter assays strongly favor an upregulation of COL4A1 mediated by disruption of miR-29 binding to its target site. Magnetic resonance imaging features were characterized by the presence of multiple pontine infarcts in all symptomatic mutation carriers. INTERPRETATION: Mutations upregulating COL4A1 expression lead to PADMAL, a severe early onset ischemic cSVD, distinct from the various phenotypes associated with COL4A1 missense glycine mutations. Ann Neurol 2016;80:741-753.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Colágeno Tipo IV/metabolismo , Leucoencefalopatias , MicroRNAs/metabolismo , Ponte/diagnóstico por imagem , Idade de Início , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Colágeno Tipo IV/genética , Exoma , Feminino , França , Ligação Genética , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Leucoencefalopatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Ligação Proteica , Regulação para Cima
19.
Eur J Hum Genet ; 24(4): 581-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26173971

RESUMO

Whole-exome sequencing (WES) has become the strategy of choice to identify causal variants in monogenic disorders. However, the list of candidate variants can be quite large, including false positives generated by sequencing errors. To reduce this list of candidate variants to the most relevant ones, a cost-effective strategy would be to focus on regions of linkage identified through linkage analysis conducted with common polymorphisms present in WES data. However, the non-uniform exon coverage of the genome and the lack of knowledge on the power of this strategy have largely precluded its use so far. To compare the performance of linkage analysis conducted with WES and SNP chip data in different situations, we performed simulations on two pedigree structures with, respectively, a dominant and a recessive trait segregating. We found that the performance of the two sets of markers at excluding regions of the genome were very similar, and there was no real gain at using SNP chip data compared with using the common SNPs extracted from WES data. When analyzing the real WES data available for these two pedigrees, we found that the linkage information derived from the WES common polymorphisms was able to reduce by half the list of candidate variants identified by a simple filtering approach. Conducting linkage analysis with WES data available on pedigrees and excluding among the candidate variants those that fall in excluded linkage regions is thus a powerful and cost-effective strategy to reduce the number of false-positive candidate variants.


Assuntos
Mapeamento Cromossômico/métodos , Exoma , Ligação Genética , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Humanos , Linhagem , Polimorfismo de Nucleotídeo Único , Razão Sinal-Ruído
20.
PLoS One ; 10(8): e0135189, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284620

RESUMO

Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.


Assuntos
Distrofina/genética , Genótipo , Distrofia Muscular de Duchenne/genética , Mutação , Linhagem , Fenótipo , Distrofina/química , Distrofina/metabolismo , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA