RESUMO
Calcium-dependent protein kinase (CDPK) is member of one of the most important signalling cascades operating inside the plant system due to its peculiar role as thermo-sensor. Here, we identified 28 full length putative CDPKs from wheat designated as TaCDPK (1-28). Based on digital gene expression, we cloned full length TaCPK-1 gene of 1691 nucleotides with open reading frame (ORF) of 548 amino acids (accession number OP125853). The expression of TaCPK-1 was observed maximum (3.1-fold) in leaf of wheat cv. HD2985 (thermotolerant) under T2 (38 ± 3 °C, 2 h), as compared to control. A positive correlation was observed between the expression of TaCPK-1 and other stress-associated genes (MAPK6, CDPK4, HSFA6e, HSF3, HSP17, HSP70, SOD and CAT) involved in thermotolerance. Global protein kinase assay showed maximum activity in leaves, as compared to root, stem and spike under heat stress. Immunoblot analysis showed abundance of CDPK protein in wheat cv. HD2985 (thermotolerant) in response to T2 (38 ± 3 °C, 2 h), as compared to HD2329 (thermosusceptible). Calcium ion (Ca2+), being inducer of CDPK, showed strong Ca-signature in the leaf tissue (Ca-622 ppm) of thermotolerant wheat cv. under heat stress, whereas it was minimum (Ca-201 ppm) in spike tissue. We observed significant variations in the ionome of wheat under HS. To conclude, TaCPK-1 plays important role in triggering signaling network and in modulation of HS-tolerance in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03989-6.
RESUMO
Increasing night-time temperatures are a major threat to sustaining global rice (Oryza sativa L.) production. A simultaneous increase in [CO2] will lead to an inevitable interaction between elevated [CO2] (e[CO2]) and high night temperature (HNT) under current and future climates. Here, we conducted field experiments to identify [CO2] responsiveness from a diverse indica panel comprising 194 genotypes under different planting geometries in 2016. Twenty-three different genotypes were tested under different planting geometries and e[CO2] using a free-air [CO2] enrichment facility in 2017. The most promising genotypes and positive and negative controls were tested under HNT and e[CO2] + HNT in 2018. [CO2] responsiveness, measured as a composite response index on different yield components, grain yield, and photosynthesis, revealed a strong relationship (R2 = 0.71) between low planting density and e[CO2]. The most promising genotypes revealed significantly lower (P < 0.001) impact of HNT in high [CO2] responsive (HCR) genotypes compared to the least [CO2] responsive genotype. [CO2] responsiveness was the major driver determining grain yield and related components in HCR genotypes with a negligible yield loss under HNT. A systematic investigation highlighted that active selection and breeding for [CO2] responsiveness can lead to maintained carbon balance and compensate for HNT-induced yield losses in rice and potentially other C3 crops under current and future warmer climates.
Assuntos
Dióxido de Carbono/efeitos adversos , Dióxido de Carbono/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Temperatura Alta/efeitos adversos , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Produtos Agrícolas/metabolismo , Variação Genética , Genótipo , ÍndiaRESUMO
Accurate estimation of plant water status is a major factor in the decision-making process regarding general land use, crop water management and drought assessment. Visible-near infrared (VNIR) spectroscopy can provide an effective means for real-time and non-invasive monitoring of leaf water content (LWC) in crop plants. The current study aims to identify water absorption bands, indices and multivariate models for development of non-destructive water-deficit stress phenotyping protocols using VNIR spectroscopy and LWC estimated from 10 different rice genotypes. Existing spectral indices and band depths at water absorption regions were evaluated for LWC estimation. The developed models were found efficient in predicting LWC of the samples kept in the same environment with the ratio of performance to deviation (RPD) values varying from 1.49 to 3.05 and 1.66 to 2.63 for indices and band depths, respectively during validation. For identification of novel indices, ratio spectral indices (RSI) and normalised difference spectral indices (NDSI) were calculated in every possible band combination and correlated with LWC. The best spectral indices for estimating LWC of rice were RSI (R1830, R1834) and NDSI (R1830, R1834) with R2 greater than 0.90 during training and validation, respectively. Among the multivariate models, partial least squares regression (PLSR) provided the best results for prediction of LWC (RPD = 6.33 and 4.06 for training and validation, respectively). The approach developed in this study will also be helpful for high-throughput water-deficit stress phenotyping of other crops.
Assuntos
Oryza , Análise dos Mínimos Quadrados , Folhas de Planta , Espectroscopia de Luz Próxima ao Infravermelho , ÁguaRESUMO
Gamma irradiation has been reported to modulate the biochemical and molecular parameters associated with the tolerance of plant species under biotic/ abiotic stress. Wheat is highly sensitive to heat stress (HS), as evident from the decrease in the quantity and quality of the total grains. Here, we studied the effect of pre-treatment of wheat dry seeds with different doses of gamma irradiation (0.20, 0.25 and 0.30â¯kGy) on tolerance level and quality of developing wheat endospermic tissue under HS (38⯰C, 1â¯h; continuously for three days). Expression analysis of genes associated with defence and starch metabolism in developing grains showed maximum transcripts of HSP17 (in response to 0.25â¯kGy + HS) and AGPase (under 0.30â¯kGy), as compared to control. Gamma irradiation was observed to balance the accumulation of H2O2 by enhancing the activities of SOD and GPx in both the cvs. under HS. Gamma irradiation was observed to stabilize the synthesis of starch and amylose by regulating the activities of AGPase, SSS and α-amylase under HS. The appearance of isoforms of gliadins (α, ß, γ, ω) were observed more in gamma irradiated seeds (0.20â¯kGy), as compared to control. Gamma irradiation (0.25â¯kGy in HD3118 & 0.20â¯kGy in HD3086) was observed to have positive effect on the width, length and test seed weight of the grains under HS. The information generated in present investigation provides easy, cheap and user-friendly technology to mitigate the effect of terminal HS on the grain-development process of wheat along with development of robust seeds with high nutrient density.
Assuntos
Grão Comestível/efeitos da radiação , Endosperma/efeitos da radiação , Raios gama , Estresse Oxidativo/efeitos da radiação , Triticum , Grão Comestível/enzimologia , Grão Comestível/fisiologia , Endosperma/enzimologia , Endosperma/fisiologia , Irradiação de Alimentos , Resposta ao Choque Térmico/efeitos da radiação , Peróxido de Hidrogênio/metabolismo , Sementes/enzimologia , Sementes/fisiologia , Sementes/efeitos da radiação , Amido/biossínteseRESUMO
The genes involved in the biosynthetic pathway of ectoine (2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid) from Bacillus halodurans were cloned as an operon and expressed in E. coli. Analysis of the deduced ectoine biosynthesis cluster amino acid sequence revealed that the ectoine operon contain 2,389 bp, encoded by three genes; ectA, ectB and ectC that encode proteins of 189, 427 and 129 amino acids with deduced molecular masses of 21,048, 47,120 and 14,797 Da respectively. Extracts of induced cells showed two bands at 41 kDa and 17 kDa, possibly corresponding to the products of the later two genes. However the expression of ectA gene could not be ascertained by SDS-PAGE. The activity of the ectA protein was confirmed by an acylation assay. The transgenic E. coli accumulated upto 4.6 mg ectoine/l culture. This is the first report of an engineered E. coli strain carrying the ectoine genes of the alkaliphilic bacterium, B. halodurans.