Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(1): 249-260, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054775

RESUMO

Currently, tremendous efforts have been made to explore efficient glucose oxidation electrocatalysts for enzymeless glucose sensors to meet the urgent demands for accurate and fast detection of glucose in the fields of health care and environmental monitoring. In this work, an advanced nanostructured material based on the well-aligned CuO/Cu2S heteronanorods incorporated with P atoms is successfully synthesized on a copper substrate. The as-synthesized material shows high catalytic behavior accompanied by outstanding electrical conductivity. This, combined with the unique morphology of unstacked nanorod arrays, which endow the entire material with a greater number of exposed active sites, make the proposed material act as a highly efficient electrocatalyst for the glucose oxidation reaction. Density functional theory calculations demonstrate that P doping endows P-doped CuO/Cu2S with excellent electrical conductivity and glucose adsorption capability, significantly improving its catalytic performance. As a result, a non-enzymatic glucose sensor fabricated based on our proposed material exhibits a broad linear detection range (0.02-8.2 mM) and a low detection limit (0.95 µM) with a high sensitivity of 2.68 mA mM-1 cm-2 and excellent selectivity.

2.
Inorg Chem ; 62(41): 16691-16709, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37791920

RESUMO

Tl2HgGeSe4 crystal was successfully, for the first time, synthesized by the Bridgman-Stockbarger technology, and its electronic structure and peculiarities of optical constants were investigated using both experimental and theoretical techniques. The present X-ray photoelectron spectroscopy measurements show that the Tl2HgGeSe4 crystal reveals small moisture sensitivity at ambient conditions and that the essential covalent constituent of the chemical bonding characterizes it. The latter suggestion was supported theoretically by ab initio calculations. The present experiments feature that the Tl2HgGeSe4 crystal is a high-resistance semiconductor with a specific electrical conductivity of σ ∼ 10-8 Ω-1 cm-1 (at 300 K). The crystal is characterized by p-type electroconductivity with an indirect energy band gap of 1.28 eV at room temperature. It was established that a good agreement with the experiments could be obtained when performing first-principles calculations using the modified Becke-Johnson functional as refined by Tran-Blaha with additional involvement in the calculating procedure of the Hubbard amendment parameter U and the impact of spin-orbit coupling (TB-mBJ + U + SO model). Under such a theoretical model, we have determined that the energy band gap of the Tl2HgGeSe4 crystal is equal to 1.114 eV, and this band gap is indirect in nature. The optical constants of Tl2HgGeSe4 are calculated based on the TB-mBJ + U + SO model.

3.
Chem Rev ; 123(16): 10206-10257, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37523660

RESUMO

Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.

4.
RSC Adv ; 13(2): 881-887, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36686945

RESUMO

The electronic and optical properties of an AgGaGeS4 crystal were studied by first-principles calculations, where the full-potential augmented plane-wave plus local orbital (APW+lo) method was used together with exchange-correlation pseudopotential described by PBE, PBE+U, and TB-mBJ+U approaches. To verify the correctness of the present theoretical calculations, we have measured for the AgGaGeS4 crystal the XPS valence-band spectrum and the X-ray emission bands representing the energy distribution of the electronic states with the biggest contributions in the valence-band region and compared them on a general energy scale with the theoretical results. Such a comparison indicates that, the calculations within the TB-mBJ+U approach reproduce the electron-band structure peculiarities (density of states - DOS) of the AgGaGeS4 crystal which are in fairly good agreement with the experimental data based on measurements of XPS and appropriate X-ray emission spectra. In particular, the DOS of the AgGaGeS4 crystal is characterized by the existence of well-separated peaks/features in the vicinity of -18.6 eV (Ga-d states) and around -12.5 eV and -7.5 eV, which are mainly composed by hybridized Ge(Ga)-s/p and S-p state. We gained good agreement between the experimental and theoretical data with respect to the main peculiarities of the energy distribution of the electronic S 3p, Ag 4d, Ga 4p and Ge 4p states, the main contributors to the valence band of AgGaGeS4. The bottom of the conduction band is mostly donated by unoccupied Ge-s states, with smaller contributions of unoccupied Ga-s, Ag-s and S-p states, too. The AgGaGeS4 crystal is almost transparent for visible light, but it strongly absorbs ultra-violet light where the significant polarization also occurs.

5.
RSC Adv ; 12(45): 29113-29123, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320756

RESUMO

The MXene SnSiGeN4 monolayer as a new member of the MoSi2N4 family was proposed for the first time, and its structural and electronic properties were explored by applying first-principles calculations with both PBE and hybrid HSE06 approaches. The layered hexagonal honeycomb structure of SnSiGeN4 was determined to be stable under dynamical effects or at room temperature of 300 K, with a rather high cohesive energy of 7.0 eV. The layered SnSiGeN4 has a Young's modulus of 365.699 N m-1 and a Poisson's ratio of 0.295. The HSE06 approach predicted an indirect band gap of around 2.4 eV for the layered SnSiGeN4. While the major donation from the N-p orbitals to the band structure makes SnSiGeN4's band gap close to those of similar 2D MXenes, the smaller distributions from the other orbitals of Sn, Si, and Ge slightly vary this band gap. The work functions of the GeN and SiN surfaces are 6.367 eV and 5.903 eV, respectively. The band gap of the layered SnSiGeN4 can be easily tuned by strain and an external electric field. A semiconductor-metal transition can occur at certain values of strain, and with an electric field higher than 5 V nm-1. The electron mobility of the layered SnSiGeN4 can reach up to 677.4 cm2 V-1 s-1, which is much higher than the hole mobility of about 52 cm2 V-1 s-1. The mentioned characteristics make the layered SnSiGeN4 a very promising material for use in electronic and photoelectronic devices, and for solar energy conversion.

6.
RSC Adv ; 12(40): 26418-26427, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36275110

RESUMO

Exploring Heusler based materials for different practical applications has drawn more and more attention. In this work, the structural, electronic, magnetic, and mechanical properties of NaTMGe (TM = all 3d transition metals) half-Heusler compounds have been systematically investigated using first-principles calculations. The TM modification plays a determinant role in the fundamental properties. Except NaNiGe and NaCuGe, the studied materials exhibit good dynamical stability. Calculations reveal the non-magnetic semiconductor of NaScGe with a direct energy gap of 1.21 eV. Prospective spintronic applications of NaVGe and NaCrGe-NaMnGe are also suggested by their magnetic semiconductor and half-metallic behavior, respectively, where their magnetic properties follow the Slater-Pauling rule. Nevertheless, the remaining materials are either magnetic or non-magnetic metallic. For the magnetic systems, the magnetism is induced mainly by the TM constituents with either spin-up (V, Cr, Mn, and Fe) or spin-down (Co) 3d states. Calculated elastic constants indicate that all compounds are mechanically stable. Furthermore, they exhibit significant elastic anisotropy, where NaScGe and NaZnGe are the least and most anisotropic materials, respectively. Also, modifying the TM elements influences the materials' ductile and brittle behaviors. Our work unravels clearly the effects of TM modification on the fundamental properties of NaTMGe compounds. NaTMGe materials show excellent versatility with promising properties for optoelectronic and spintronic applications.

7.
Phys Chem Chem Phys ; 24(27): 16512-16521, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35781308

RESUMO

We discuss and examine the stability, electronic properties, and transport characteristics of asymmetric monolayers XWGeN2 (X = O, S, Se, Te) using ab initio density functional theory. All four monolayers of quintuple-layer atomic Janus XWGeN2 are predicted to be stable and they are all indirect semiconductors in the ground state. When the spin-orbit coupling (SOC) is included, a large spin splitting at the K point is found in XWGeN2 monolayers, particularly, a giant Rashba-type spin splitting is observed around the Γ point in three structures SWGeN2, SeWGeN2, and TeWGeN2. The Rashba parameters in these structures are directionally isotropic along the high-symmetry directions Γ-K and Γ-M and the Rashba constant αR increases as the X element moves from S to Te. TeWGeN2 has the largest Rashba energy up to 37.4 meV (36.6 meV) in the Γ-K (Γ-M) direction. Via the deformation potential method, we calculate the carrier mobility of all four XWGeN2 monolayers. It is found that the electron mobilities of OWGeN2 and SWGeN2 monolayers exceed 200 cm2 V-1 s-1, which are suitable for applications in nanoelectronic devices.

8.
RSC Adv ; 12(30): 19115-19121, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865616

RESUMO

In this work, we systematically examine the electronic features and contact types of van der Waals heterostructures (vdWHs) combining single-layer boron phosphide (BP) and Janus Ga2SSe using first-principles calculations. Owing to the out-of-plane symmetry being broken, the BP/Ga2SSe vdWHs are divided into two different stacking patterns, which are BP/SGa2Se and BP/SeGa2S. Our results demonstrate that these stacking patterns are structurally and mechanically stable. The combination of single-layer BP and Janus Ga2SSe gives rise to an enhancement in the Young's modulus compared to the constituent monolayers. Furthermore, at the ground state, the BP/Ga2SSe vdWHs possess a type-I (straddling) band alignment, which is desired for next-generation optoelectronic applications. The interlayer separation and electric field are effectively used to tune the electronic features of the BP/Ga2SSe vdWH from the type-I to type-II band alignment, and from semiconductor to metal. Our findings show that the BP/Ga2SSe vdWH would be appropriate for next-generation multifunctional optoelectronic and photovoltaic devices.

9.
RSC Adv ; 12(26): 16677-16683, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754866

RESUMO

In this work, the effects of transition metal (TM = V and Cr) adsorption on AlN monolayer electronic and magnetic properties are investigated using first-principles density functional theory (DFT) calculations. TMs prefer to be adsorbed on-top of a bridge position as indicated by the calculated adsorption energy. V adatoms induce half-metallicity, while Cr adatoms metallize the monolayer. The magnetic properties are produced mainly by the V and Cr adatoms with magnetic moments of 3.72 and 4.53 µ B, respectively. Further investigation indicates that antiferromagnetic (AFM) ordering is energetically more favorable than ferromagnetic (FM) ordering. In both cases, the AFM state is stabilized upon increasing adatom coverage. The AlN monolayer becomes an AFM semiconductor with 0.5 ML of V adatom, and metallic nature is induced with 1.0 ML. Meanwhile, the degree of metallicity increases with increasing Cr adatoms. Results reported herein may provide a feasible new approach to functionalize AlN monolayers for spintronic applications.

10.
RSC Adv ; 12(21): 12971-12977, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35497018

RESUMO

Due to the broken vertical symmetry, the Janus material possesses many extraordinary physico-chemical and mechanical properties that cannot be found in original symmetric materials. In this paper, we study in detail the structural, electronic, and transport properties of 1T Janus PdXO monolayers (X = S, Se, Te) by means of density functional theory. PdXO monolayers are observed to be stable based on the analysis of the vibrational characteristics and molecular dynamics simulations. All three PdXO structures exhibit semiconducting characteristics with indirect bandgap based on evaluations with hybrid functional Heyd-Scuseria-Ernzerhof (HSE06). The influences of the spin-orbit coupling (SOC) on the band diagram of PdXO are strong. Particularly, when the SOC is included, PdTeO is calculated to be metallic by the HSE06+SOC approach. With high electron mobility, Janus PdXO structures have good potential for applications in future nanodevices.

11.
Environ Res ; 212(Pt B): 113277, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35461850

RESUMO

Road traffic constitutes a major source of air pollutants in urban Beijing, which are responsible for substantial premature mortality. A series of policies and regulations has led to appreciable traffic emission reductions in recent decades. To shed light on long-term (2014-2020) roadside air pollution and assess the efficacy of traffic control measures and their effects on public health, this study quantitatively evaluated changes in the concentrations of six key air pollutants (PM2.5, PM10, NO2, SO2, CO and O3) measured at 5 roadside and 12 urban background monitoring stations in Beijing. We found that the annual mean concentrations of these air pollutants were remarkably reduced by 47%-71% from 2014 to 2020, while the concurrent ozone concentration increased by 17.4%. In addition, we observed reductions in the roadside increments in PM2.5, NO2, SO2 and CO of 54.8%, 29.8%, 20.6%, and 59.1%, respectively, indicating the high effectiveness of new vehicle standard (China V and VI) implementation in Beijing. The premature deaths due to traffic emissions were estimated to be 8379 and 1908 cases in 2014 and 2020, respectively. The impact of NO2 from road traffic relative to PM2.5 on premature mortality was comparable to that of traffic-related PM2.5 emissions. The public health effect of SO2 originating from traffic was markedly lower than that of PM2.5. The results indicated that a reduction in traffic-related NO2 could likely yield the greatest benefits for public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio , Material Particulado/análise , Saúde Pública
12.
RSC Adv ; 12(13): 7973-7979, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424776

RESUMO

In this paper, the structural, electronic, and transport properties of Janus GaInX3 (X = S, Se, Te) single-layers are investigated by a first-principles calculations. All three structures of GaInX3 are examined to be stable based on the analysis of their phonon dispersions, cohesive energy, and Born's criteria for mechanical stability. At the ground state, The Janus GaInX3 is a semiconductor in which its bandgap decreases as the chalcogen element X moves from S to Te. Due to the vertical asymmetric structure, a difference in the vacuum level between the two surfaces of GaInX3 is found, leading to work functions on the two sides being different. The Janus GaInX3 exhibit high directional isotropic transport characteristics. Particularly, GaInX3 single-layers have high electron mobility, which could make them potential materials for applications in electronic nanodevices.

13.
RSC Adv ; 12(17): 10249-10257, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35425004

RESUMO

First-principles calculations were performed to study a novel layered SnGe2N4 compound, which was found to be dynamically and thermally stable in the 2H phase, with the space group P6̄m2 and lattice constant a = 3.143 Å. Due to its hexagonal structure, SnGe2N4 exhibits isotropic mechanical properties on the x-y plane, where the Young's modulus is 335.49 N m-1 and the Poisson's ratio is 0.862. The layered 2H SnGe2N4 is a semiconductor with a direct band gap of 1.832 eV, allowing the absorption of infrared and visible light at a rate of about 104 cm-1. The DOS is characterized by multiple high peaks in the valence and conduction bands, making it possible for this semiconductor to absorb light in the ultraviolet region with an even higher rate of 105 cm-1. The band structure, with a strongly concave downward conduction band and rather flat valence band, leads to a high electron mobility of 1061.66 cm2 V-1 s-1, which is substantially greater than the hole mobility of 28.35 cm2 V-1 s-1. This difference in mobility is favorable for electron-hole separation. These advantages make layered 2H SnGe2N4 a very promising photoelectric material. Furthermore, the electronic structure of 2H SnGe2N4 responds well to strain and an external electric field due to the specificity of the p-d hybridization, which predominantly constructs the valence bands. As a result, strain and external electric fields can efficiently tune the band gap value of 2H SnGe2N4, where compressive strain widens the band gap, meanwhile tensile strain and external electric fields cause band gap reduction. In particular, the band gap is decreased by about 0.25 eV when the electric field strength increases by 0.1 V Å-1, making a semiconductor-metal transition possible for the layered SnGe2N4.

14.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160531

RESUMO

Coarse-grained modeling methods allow simulations at larger scales than molecular dynamics, making it feasible to simulate multifluid systems. It is, however, critical to use model parameters that represent the fluid properties with fidelity under both equilibrium and dynamic conditions. In this work, dissipative particle dynamics (DPD) methods were used to simulate the flow of oil and water in a narrow slit under Poiseuille and Couette flow conditions. Large surfactant molecules were also included in the computations. A systematic methodology is presented to determine the DPD parameters necessary for ensuring that the boundary conditions were obeyed, that the oil and water viscosities were represented correctly, and that the velocity profile for the multifluid system agreed with the theoretical expectations. Surfactant molecules were introduced at the oil-water interface (sodium dodecylsulfate and octaethylene glycol monododecyl ether) to determine the effects of surface-active molecules on the two-phase flow. A critical shear rate was found for Poiseuille flow, beyond which the surfactants desorbed to form the interface forming micelles and destabilize the interface, and the surfactant-covered interface remained stable under Couette flow even at high shear rates.

15.
J Colloid Interface Sci ; 609: 158-169, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34894550

RESUMO

HYPOTHESIS: Janus particles (JPs) and surfactants express different behaviors at the oil-water interface under compression. When both are present at the interface, their synergies result in a different collapse mechanism than when present individually depending on the concentration of the JPs and surfactants. EXPERIMENTS: Coarse-grained modeling methods were used to probe the synergies between Janus nanoparticles and nonionic surfactants on the stability of an oil-water interface under compression. When both JPs and surfactants were present, the interface was covered at 0-55% area by JPs and contained surfactants at 0-40% of the interfacial surfactant concentration corresponding to the critical micelle concentration (CMC). FINDINGS: Compression of the interface with only surfactants resulted in the expulsion of surfactant molecules to the water phase once the interfacial concentration of surfactant molecules reached the CMC value. Compression of a Janus particle-laden interface past the closed-packing point led to a buckled interface, so that the total interfacial area remained constant upon further compression. When both surfactants and JPs were present on the interface, JPs still caused buckling, which helped retain the surfactant molecules on the interface. The interface exhibited a higher level of deformation in presence of surfactants. When the surfactant concentration was high, under compression, the surfactants partitioned into the water phase, but the buckling of the interface persisted.


Assuntos
Nanopartículas Multifuncionais , Tensoativos , Micelas , Pressão , Água
16.
J Phys Condens Matter ; 34(11)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34915459

RESUMO

Motivated by the recent successful synthesis of 2D quintuple-layer atomic materials, for the first time, we design and investigate the electronic and transport properties of Janus Al2XY2(X/Y = S, Se, Te; X ≠ Y) monolayers by using the density functional theory. Our calculations demonstrate that most of the models of Al2XY2(except for Al2STe2monolayer) are dynamically and mechanically stable. By using the hybrid functional, all models of Al2XY2are semiconductors with an indirect bandgap. Meanwhile, Al2TeS2monolayer is found to be metal at the Perdew-Burke-Ernzerhof level. Due to the vertical asymmetry structure, an intrinsic built-in electric field exists in the Al2XY2and leads to a difference in the vacuum levels between the two sides of the monolayers. Carrier mobilities of Al2XY2monolayers are high directional anisotropic due to the anisotropy of their deformation potential constant. Al2XY2monolayers exhibit high electron mobility, particularly, the electron mobility of Al2SeS2exceeds 1 × 104cm2V-1 s-1, suggesting that they are suitable for applications in nanometer-sized electronic devices.

17.
J Phys Condens Matter ; 34(4)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34670205

RESUMO

Two-dimensional Janus monolayers have outstanding electronic and transport properties due to their asymmetric atomic structures. In the present work, we systematically study the structural, electronic, and transport properties of the Janus GaInX2(X= S, Se, Te) monolayers by using the first-principles calculations. The stability of the investigated monolayers is confirmed via the analysis of vibrational spectrum and molecular dynamics simulations. Our calculations demonstrate that while GaInS2and GaInSe2monolayers are direct semiconductors, GaInTe2monolayer exhibits the characteristics of an indirect semiconductor. The band gap of GaInX2decreases when the chalcogen elementXvaries from S to Te. Obtained results reveal that small spin-orbit splitting energy in the valence band is found around the Γ point of the Brillouin zone when the spin-orbit coupling is included. Interestingly, GaInS2and GaInSe2have high and directional isotropic electron mobility meanwhile the directional anisotropy of the electron mobility is found in the Janus GaInTe2monolayer. Our findings not only present superior physical properties of GaInX2monolayers but also show promising potential applications of these materials in nanoelectronic devices.

18.
Sci Rep ; 11(1): 20622, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663843

RESUMO

This work aims to test the effectiveness of newly developed DFT-1/2 functional in calculating the electronic and optical properties of inorganic lead halide perovskites CsPbBr3. Herein, from DFT-1/2 we have obtained the direct band gap of 2.36 eV and 3.82 eV for orthorhombic bulk and 001-surface, respectively. The calculated energy band gap is in qualitative agreement with the experimental findings. The bandgap of ultra-thin film of CsPbBr3 is found to be 3.82 eV, which is more than the expected range 1.23-3.10 eV. However, we have found that the bandgap can be reduced by increasing the surface thickness. Thus, the system under investigation looks promising for optoelectronic and photocatalysis applications, due to the bandgap matching and high optical absorption in UV-Vis (Ultra violet and visible spectrum) range of electro-magnetic(em) radiation.

19.
Atmos Chem Phys ; 21(7): 5549-5573, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-34462630

RESUMO

Epidemiological studies have consistently linked exposure to PM2.5 with adverse health effects. The oxidative potential (OP) of aerosol particles has been widely suggested as a measure of their potential toxicity. Several acellular chemical assays are now readily employed to measure OP; however, uncertainty remains regarding the atmospheric conditions and specific chemical components of PM2.5 that drive OP. A limited number of studies have simultaneously utilised multiple OP assays with a wide range of concurrent measurements and investigated the seasonality of PM2.5 OP. In this work, filter samples were collected in winter 2016 and summer 2017 during the atmospheric pollution and human health in a Chinese megacity campaign (APHH-Beijing), and PM2.5 OP was analysed using four acellular methods: ascorbic acid (AA), dithiothreitol (DTT), 2,7-dichlorofluorescin/hydrogen peroxidase (DCFH) and electron paramagnetic resonance spectroscopy (EPR). Each assay reflects different oxidising properties of PM2.5, including particle-bound reactive oxygen species (DCFH), superoxide radical production (EPR) and catalytic redox chemistry (DTT/AA), and a combination of these four assays provided a detailed overall picture of the oxidising properties of PM2.5 at a central site in Beijing. Positive correlations of OP (normalised per volume of air) of all four assays with overall PM2.5 mass were observed, with stronger correlations in winter compared to summer. In contrast, when OP assay values were normalised for particle mass, days with higher PM2.5 mass concentrations (µgm-3) were found to have lower mass-normalised OP values as measured by AA and DTT. This finding supports that total PM2.5 mass concentrations alone may not always be the best indicator for particle toxicity. Univariate analysis of OP values and an extensive range of additional measurements, 107 in total, including PM2.5 composition, gas-phase composition and meteorological data, provided detailed insight into the chemical components and atmospheric processes that determine PM2.5 OP variability. Multivariate statistical analyses highlighted associations of OP assay responses with varying chemical components in PM2.5 for both mass- and volume-normalised data. AA and DTT assays were well predicted by a small set of measurements in multiple linear regression (MLR) models and indicated fossil fuel combustion, vehicle emissions and biogenic secondary organic aerosol (SOA) as influential particle sources in the assay response. Mass MLR models of OP associated with compositional source profiles predicted OP almost as well as volume MLR models, illustrating the influence of mass composition on both particle-level OP and total volume OP. Univariate and multivariate analysis showed that different assays cover different chemical spaces, and through comparison of mass- and volume-normalised data we demonstrate that mass-normalised OP provides a more nuanced picture of compositional drivers and sources of OP compared to volume-normalised analysis. This study constitutes one of the most extensive and comprehensive composition datasets currently available and provides a unique opportunity to explore chemical variations in PM2.5 and how they affect both PM2.5 OP and the concentrations of particle-bound reactive oxygen species.

20.
J Phys Chem Lett ; 12(16): 3934-3940, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33872012

RESUMO

Two-dimensional MoSi2N4 is an emerging class of 2D MA2N4 family, which has recently been synthesized in experiment. Herein, we construct ultrathin van der Waals heterostructures between graphene and a new 2D Janus MoGeSiN4 material and investigate their interfacial electronic properties and tunable Schottky barriers and contact types using first-principles calculations. The GR/MoGeSiN4 vdWHs are expected to be energetically favorable and stable. The high carrier mobility in graphene/MoGeSiN4 vdWHs makes them suitable for high-speed nanoelectronic devices. Furthermore, depending on the stacking patterns, either an n-type or a p-type Schottky contact is formed at the GR/MoGeSiN4 interface. The strain engineering and electric field can lead to the transformation from an n-type to a p-type Schottky contact or from Schottky to Ohmic contact in graphene/MoGeSiN4 heterostructure. These findings provide useful guidance for designing controllable Schottky nanodevices based on graphene/MoGeSiN4 heterostructures with high-performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA