Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 631, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914930

RESUMO

BACKGROUND: Current RNA-seq analysis software for RNA-seq data tends to use similar parameters across different species without considering species-specific differences. However, the suitability and accuracy of these tools may vary when analyzing data from different species, such as humans, animals, plants, fungi, and bacteria. For most laboratory researchers lacking a background in information science, determining how to construct an analysis workflow that meets their specific needs from the array of complex analytical tools available poses a significant challenge. RESULTS: By utilizing RNA-seq data from plants, animals, and fungi, it was observed that different analytical tools demonstrate some variations in performance when applied to different species. A comprehensive experiment was conducted specifically for analyzing plant pathogenic fungal data, focusing on differential gene analysis as the ultimate goal. In this study, 288 pipelines using different tools were applied to analyze five fungal RNA-seq datasets, and the performance of their results was evaluated based on simulation. This led to the establishment of a relatively universal and superior fungal RNA-seq analysis pipeline that can serve as a reference, and certain standards for selecting analysis tools were derived for reference. Additionally, we compared various tools for alternative splicing analysis. The results based on simulated data indicated that rMATS remained the optimal choice, although consideration could be given to supplementing with tools such as SpliceWiz. CONCLUSION: The experimental results demonstrate that, in comparison to the default software parameter configurations, the analysis combination results after tuning can provide more accurate biological insights. It is beneficial to carefully select suitable analysis software based on the data, rather than indiscriminately choosing tools, in order to achieve high-quality analysis results more efficiently.


Assuntos
RNA-Seq , Software , Fluxo de Trabalho , RNA-Seq/métodos , Fungos/genética , Biologia Computacional/métodos , Análise de Sequência de RNA/métodos , Processamento Alternativo
2.
Plant Physiol Biochem ; 213: 108870, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38914038

RESUMO

Populus, a significant fast-growing tree species with global afforestation and energy potential, holds considerable economic value. The abundant production of secondary xylem by trees, which serves as a vital resource for industrial purposes and human sustenance, necessitates the orchestration of various regulatory mechanisms, encompassing transcriptional regulators and microRNAs (miRNAs). Nevertheless, the investigation of microRNA-mediated regulation of poplar secondary growth remains limited. In this study, we successfully isolated a novel microRNA (Pag-miR257) from 84 K poplar and subsequently integrated it into the 35 S overexpression vector. The overexpression of Pag-miR257 resulted in notable increases in plant height, stem diameter, and fresh weight. Additionally, the overexpression of Pag-miR257 demonstrated a significant enhancement in net photosynthetic rate. The findings from the examination of cell wall autofluorescence indicated a substantial increase in both xylem area and the number of vessels in poplar plants overexpressing Pag-miR257. Furthermore, the cell wall of the Pag-miR257 overexpressing plants exhibited thickening as observed through transmission electron microscopy. Moreover, the Fourier Transforms Infrared (FTIR) analysis and phloroglucinol-HCl staining revealed an elevation in lignin content in Pag-miR257 overexpressing poplar plants. The findings of this study suggest that microRNA257 may play a role in the control of secondary growth in poplar stems, thereby potentially enhancing the development of wood engineering techniques for improved material and energy production.

3.
New Phytol ; 242(5): 2043-2058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38515251

RESUMO

MicroRNAs are essential in plant development and stress resistance, but their specific roles in drought stress require further investigation. Here, we have uncovered that a Populus-specific microRNAs (miRNA), miR6445, targeting NAC (NAM, ATAF, and CUC) family genes, is involved in regulating drought tolerance of poplar. The expression level of miR6445 was significantly upregulated under drought stress; concomitantly, seven targeted NAC genes showed significant downregulation. Silencing the expression of miR6445 by short tandem target mimic technology significantly decreased the drought tolerance in poplar. Furthermore, 5' RACE experiments confirmed that miR6445 directly targeted NAC029. The overexpression lines of PtrNAC029 (OE-NAC029) showed increased sensitivity to drought compared with knockout lines (Crispr-NAC029), consistent with the drought-sensitive phenotype observed in miR6445-silenced strains. PtrNAC029 was further verified to directly bind to the promoters of glutathione S-transferase U23 (GSTU23) and inhibit its expression. Both Crispr-NAC029 and PtrGSTU23 overexpressing plants showed higher levels of PtrGSTU23 transcript and GST activity while accumulating less reactive oxygen species (ROS). Moreover, poplars overexpressing GSTU23 demonstrated enhanced drought tolerance. Taken together, our research reveals the crucial role of the miR6445-NAC029-GSTU23 module in enhancing poplar drought tolerance by regulating ROS homeostasis. This finding provides new molecular targets for improving the drought resistance of trees.


Assuntos
Adaptação Fisiológica , Secas , Regulação da Expressão Gênica de Plantas , Glutationa Transferase , MicroRNAs , Proteínas de Plantas , Populus , Espécies Reativas de Oxigênio , Populus/genética , Populus/fisiologia , Populus/enzimologia , MicroRNAs/genética , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Adaptação Fisiológica/genética , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Sequestradores de Radicais Livres/metabolismo , Sequência de Bases , Genes de Plantas , Regiões Promotoras Genéticas/genética , Resistência à Seca
4.
J Mol Biol ; : 168530, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38462130

RESUMO

Through an extensive literature survey, we have upgraded the Leaf Senescence Database (LSD v5.0; https://ngdc.cncb.ac.cn/lsd/), a curated repository of comprehensive senescence-associated genes (SAGs) and their corresponding mutants. Since its inception in 2010, LSD undergoes frequent updates to encompass the latest advances in leaf senescence research and its current version comprises a high-quality collection of 31,740 SAGs and 1,209 mutants from 148 species, which were manually searched based on robust experimental evidence and further categorized according to their functions in leaf senescence. Furthermore, LSD was greatly enriched with comprehensive annotations for the SAGs through meticulous curation using both manual and computational methods. In addition, it was equipped with user-friendly web interfaces that facilitate text queries, BLAST searches, and convenient download of SAG sequences for localized analysis. Users can effortlessly navigate the database to access a plethora of information, including literature references, mutants, phenotypes, multi-omics data, miRNA interactions, homologs in other plants, and cross-links to various databases. Taken together, the upgraded version of LSD stands as the most comprehensive and informative plant senescence-related database to date, incorporating the largest collection of SAGs and thus bearing great utility for a wide range of studies related to plant senescence.

5.
Plant Biotechnol J ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470397

RESUMO

Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.

6.
BMC Genomics ; 25(1): 317, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549059

RESUMO

BACKGROUND: The growth-regulating factor-interacting factor (GIF) gene family plays a vital role in regulating plant growth and development, particularly in controlling leaf, seed, and root meristem homeostasis. However, the regulatory mechanism of heteromorphic leaves by GIF genes in Populus euphratica as an important adaptative trait of heteromorphic leaves in response to desert environment remains unknown. RESULTS: This study aimed to identify and characterize the GIF genes in P. euphratica and other five Salicaceae species to investigate their role in regulating heteromorphic leaf development. A total of 27 GIF genes were identified and characterized across six Salicaceae species (P. euphratica, Populus pruinose, Populus deltoides, Populus trichocarpa, Salix sinopurpurea, and Salix suchowensis) at the genome-wide level. Comparative genomic analysis among these species suggested that the expansion of GIFs may be derived from the specific Salicaceae whole-genome duplication event after their divergence from Arabidopsis thaliana. Furthermore, the expression data of PeGIFs in heteromorphic leaves, combined with functional information on GIF genes in Arabidopsis, indicated the role of PeGIFs in regulating the leaf development of P. euphratica, especially PeGIFs containing several cis-acting elements associated with plant growth and development. By heterologous expression of the PeGIF3 gene in wild-type plants (Col-0) and atgif1 mutant of A. thaliana, a significant difference in leaf expansion along the medial-lateral axis, and an increased number of leaf cells, were observed between the overexpressed plants and the wild type. CONCLUSION: PeGIF3 enhances leaf cell proliferation, thereby resulting in the expansion of the central-lateral region of the leaf. The findings not only provide global insights into the evolutionary features of Salicaceae GIFs but also reveal the regulatory mechanism of PeGIF3 in heteromorphic leaves of P. euphratica.


Assuntos
Arabidopsis , Populus , Salicaceae , Salix , Salicaceae/genética , Folhas de Planta , Salix/genética , Genômica , Regulação da Expressão Gênica de Plantas
7.
BMC Plant Biol ; 23(1): 604, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030990

RESUMO

BACKGROUND: The WUSCHEL-related Homeobox (WOX) genes, which encode plant-specific homeobox (HB) transcription factors, play crucial roles in regulating plant growth and development. However, the functions of WOX genes are little known in Eucalyptus, one of the fastest-growing tree resources with considerable widespread cultivation worldwide. RESULTS: A total of nine WOX genes named EgWOX1-EgWOX9 were retrieved and designated from Eucalyptus grandis. From the three divided clades marked as Modern/WUS, Intermediate and Ancient, the largest group Modern/WUS (6 EgWOXs) contains a specific domain with 8 amino acids: TLQLFPLR. The collinearity, cis-regulatory elements, protein-protein interaction network and gene expression analysis reveal that the WUS proteins in E. grandis involve in regulating meristems development and regeneration. Furthermore, by externally adding of truncated peptides isolated from WUS specific domain, the transformation efficiency in E. urophylla × E. grandis DH32-29 was significant enhanced. The transcriptomics data further reveals that the use of small peptides activates metabolism pathways such as starch and sucrose metabolism, phenylpropanoid biosynthesis and flavonoid biosynthesis. CONCLUSIONS: Peptides isolated from WUS protein can be utilized to enhance the transformation efficiency in Eucalyptus, thereby contributing to the high-efficiency breeding of Eucalyptus.


Assuntos
Eucalyptus , Genes Homeobox , Eucalyptus/genética , Eucalyptus/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Melhoramento Vegetal , Peptídeos/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
8.
New Phytol ; 240(3): 1116-1133, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608617

RESUMO

The regulatory framework of leaf senescence is gradually becoming clearer; however, the fine regulation of this process remains largely unknown. Here, genetic analysis revealed that U2 small nuclear ribonucleoprotein B (U2B″), a component of the spliceosome, is a negative regulator of leaf senescence. Mutation of U2B″ led to precocious leaf senescence, whereas overexpression of U2B″ extended leaf longevity. Transcriptome analysis revealed that the jasmonic acid (JA) signaling pathway was activated in the u2b″ mutant. U2B″ enhances the generation of splicing variant JASMONATE ZIM-DOMAIN 9ß (JAZ9ß) with an intron retention in the Jas motif, which compromises its interaction with CORONATINE INSENSITIVE1 and thus enhances the stability of JAZ9ß protein. Moreover, JAZ9ß could interact with MYC2 and obstruct its activity, thereby attenuating JA signaling. Correspondingly, overexpression of JAZ9ß rescued the early senescence phenotype of the u2b″ mutant. Furthermore, JA treatment promoted expression of U2B″ that was found to be a direct target of MYC2. Overexpression of MYC2 in the u2b″ mutant resulted in a more pronounced premature senescence than that in wild-type plants. Collectively, our findings reveal that the spliceosomal protein U2B″ fine-tunes leaf senescence by enhancing the expression of JAZ9ß and thereby attenuating JA signaling.

9.
Nat Commun ; 14(1): 4285, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463897

RESUMO

The conversion of lignocellulosic feedstocks to fermentable sugar for biofuel production is inefficient, and most strategies to enhance efficiency directly target lignin biosynthesis, with associated negative growth impacts. Here we demonstrate, for both laboratory- and field-grown plants, that expression of Pag-miR408 in poplar (Populus alba × P. glandulosa) significantly enhances saccharification, with no requirement for acid-pretreatment, while promoting plant growth. The overexpression plants show increased accessibility of cell walls to cellulase and scaffoldin cellulose-binding modules. Conversely, Pag-miR408 loss-of-function poplar shows decreased cell wall accessibility. Overexpression of Pag-miR408 targets three Pag-LACCASES, delays lignification, and modestly reduces lignin content, S/G ratio and degree of lignin polymerization. Meanwhile, the LACCASE loss of function mutants exhibit significantly increased growth and cell wall accessibility in xylem. Our study shows how Pag-miR408 regulates lignification and secondary growth, and suggest an effective approach towards enhancing biomass yield and saccharification efficiency in a major bioenergy crop.


Assuntos
MicroRNAs , Populus , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , Biomassa , Populus/metabolismo
10.
New Phytol ; 240(2): 694-709, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37265004

RESUMO

Leaf senescence is an orderly process regulated by multiple internal factors and diverse environmental stresses including nutrient deficiency. Histone variants are involved in regulating plant growth and development. However, their functions and underlying regulatory mechanisms in leaf senescence remain largely unclear. Here, we found that H2B histone variant HTB4 functions as a negative regulator of leaf senescence. Loss of function of HTB4 led to early leaf senescence phenotypes that were rescued by functional complementation. RNA-seq analysis revealed that several Ib subgroup basic helix-loop-helix (bHLH) transcription factors (TFs) involved in iron (Fe) homeostasis, including bHLH038, bHLH039, bHLH100, and bHLH101, were suppressed in the htb4 mutant, thereby compromising the expressions of FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER (IRT1), two important components of the Fe uptake machinery. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed that HTB4 could bind to the promoter regions of Ib bHLH TFs and enhance their expression by promoting the enrichment of the active mark H3K4me3 near their transcriptional start sites. Moreover, overexpression of Ib bHLH TFs or IRT1 suppressed the premature senescence phenotype of the htb4 mutant. Our work established a signaling pathway, HTB4-bHLH TFs-FRO2/IRT1-Fe homeostasis, which regulates the onset and progression of leaf senescence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Senescência Vegetal , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas
11.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901852

RESUMO

Nuclear Factor-Y (NF-Y), composed of three subunits NF-YA, NF-YB and NF-YC, exists in most of the eukaryotes and is relatively conservative in evolution. As compared to animals and fungi, the number of NF-Y subunits has significantly expanded in higher plants. The NF-Y complex regulates the expression of target genes by directly binding the promoter CCAAT box or by physical interaction and mediating the binding of a transcriptional activator or inhibitor. NF-Y plays an important role at various stages of plant growth and development, especially in response to stress, which attracted many researchers to explore. Herein, we have reviewed the structural characteristics and mechanism of function of NF-Y subunits, summarized the latest research on NF-Y involved in the response to abiotic stresses, including drought, salt, nutrient and temperature, and elaborated the critical role of NF-Y in these different abiotic stresses. Based on the summary above, we have prospected the potential research on NF-Y in response to plant abiotic stresses and discussed the difficulties that may be faced in order to provide a reference for the in-depth analysis of the function of NF-Y transcription factors and an in-depth study of plant responses to abiotic stress.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Fator de Ligação a CCAAT/genética
12.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902250

RESUMO

F-box proteins are important components of eukaryotic SCF E3 ubiquitin ligase complexes, which specifically determine protein substrate proteasomal degradation during plant growth and development, as well as biotic and abiotic stress. It has been found that the FBA (F-box associated) protein family is one of the largest subgroups of the widely prevalent F-box family and plays significant roles in plant development and stress response. However, the FBA gene family in poplar has not been systematically studied to date. In this study, a total of 337 F-box candidate genes were discovered based on the fourth-generation genome resequencing of P. trichocarpa. The domain analysis and classification of candidate genes revealed that 74 of these candidate genes belong to the FBA protein family. The poplar F-box genes have undergone multiple gene replication events, particularly in the FBA subfamily, and their evolution can be attributed to genome-wide duplication (WGD) and tandem duplication (TD). In addition, we investigated the P. trichocarpa FBA subfamily using the PlantGenIE database and quantitative real-time PCR (qRT-PCR); the results showed that they are expressed in the cambium, phloem and mature tissues, but rarely expressed in young leaves and flowers. Moreover, they are also widely involved in the drought stress response. At last, we selected and cloned PtrFBA60 for physiological function analysis and found that it played an important role in coping with drought stress. Taken together, the family analysis of FBA genes in P. trichocarpa provides a new opportunity for the identification of P. trichocarpa candidate FBA genes and elucidation of their functions in growth, development and stress response, thus demonstrating their utility in the improvement of P. trichocarpa.


Assuntos
Proteínas F-Box , Família Multigênica , Secas , Genoma de Planta , Genes de Plantas , Proteínas F-Box/genética , Estresse Fisiológico/genética , Filogenia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
13.
Life (Basel) ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36836919

RESUMO

As eukaryotes, plants and animals have many commonalities on the genetic level, although they differ greatly in appearance and physiological habits. The primary goal of current plant research is to improve the crop yield and quality. However, plant research has a wider aim, exploiting the evolutionary conservatism similarities between plants and animals, and applying discoveries in the field of botany to promote zoological research that will ultimately serve human health, although very few studies have addressed this aspect. Here, we analyzed 35 human-disease-related gene orthologs in plants and characterized the genes in depth. Thirty-four homologous genes were found to be present in the herbaceous annual plant Arabidopsis thaliana and the woody perennial plant Populus trichocarpa, with most of the genes having more than two exons, including the ATM gene with 78 exons. More surprisingly, 27 (79.4%) of the 34 homologous genes in Arabidopsis were found to be senescence-associated genes (SAGs), further suggesting a close relationship between human diseases and cellular senescence. Protein-protein interaction network analysis revealed that the 34 genes formed two main subnetworks, and genes in the first subnetwork interacted with 15 SAGs. In conclusion, our results show that most of the 34 homologs of human-disease-associated genes in plants are involved in the leaf senescence process, suggesting that leaf senescence may offer a means to study the pathogenesis of human diseases and to screen drugs for the treat of diseases.

14.
Int J Biol Macromol ; 224: 1524-1540, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36441079

RESUMO

Autophagy is the process by which intracellular components are delivered to lysosomes or vacuoles for degradation and recycling, which can promote the tolerance of organisms to biotic/abiotic stresses. However, autophagy-related genes (ATG) are not well studied in woody plants. Here, 48 ATG genes were identified in the poplar genome and divided into 14 subfamilies according to the phylogenetic tree. Collinearity analysis showed that 26 pairs of genes were derived by segmental duplication in poplars. The isogenous gene pairs of the ATG family between P. trichocarpa and other six species were analyzed by synteny analysis. Moreover, the ATG promoters contain a large number of phytohormone response elements and stress-response elements. Both phytohormone and salt treatments can induce the expression of PagATG18 subfamily genes. Overexpression of PagATG18a significantly improved the salt tolerance of poplar and reducing the oxidative damage of the membrane. Further research verified that PagATG18a interacted with the light-harvesting complex LHCB1 and APX2, indicating PagATG18a might be involved in regulating photosynthesis and antioxidant activity under stress. This study provides valuable information for further research on the functional characteristics of ATG genes in poplar and the theoretical basis for poplar stress resistance breeding.


Assuntos
Populus , Tolerância ao Sal , Tolerância ao Sal/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Autofagia , Regulação da Expressão Gênica de Plantas , Populus/genética
15.
Tree Physiol ; 43(1): 102-117, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36074523

RESUMO

Drought is one of the major limiting factors in the growth of terrestrial plants. Abscisic acid (ABA) and pyrabactin resistance 1/prabactin resistance-1 like/regulatory components of ABA receptors (PYR/PYL/RCARs) play a key role in response to drought stress. However, the underlying mechanisms of this control remain largely elusive in trees. In this study, PePYL4, a potential ortholog of the PYR/PYL/RCARs gene, was cloned from Populus euphratica. It was localized in the cytoplasm and nucleus, induced by ABA, osmotic and dehydration treatments. To study the potential biological functions of PePYL4, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B38') overexpressing PePYL4 were generated. PePYL4 overexpression significantly increased ABA sensitivity and reduced stomatal aperture. Compared with wild-type plants, transgenic plants had higher water-use efficiency (WUE) and lower transpiration. When exposed to drought stress, PePYL4 overexpression plants maintained higher photosynthetic activity and accumulated more biomass. Moreover, overexpression of PePYL4 improved antioxidant enzyme activity and ascorbate content to accelerate reactive oxygen species scavenging. Meanwhile, upregulation expression of the stress-related genes also contributed to improving the drought tolerance of transgenic plants. In conclusion, our data suggest that PePYL4 is a promising gene target for regulating WUE and drought tolerance in Populus.


Assuntos
Populus , Água , Água/metabolismo , Resistência à Seca , Populus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Secas , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Int J Biol Macromol ; 214: 672-684, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738343

RESUMO

Basic leucine zipper (bZIP) proteins play important roles in responding to biotic and abiotic stresses in plants. However, the molecular mechanisms of plant resistance to pathogens remain largely unclear in poplar. The present study isolated a TGACG-binding (TGA) transcription factor, PeTGA1, from Populus euphratica. PeTGA1 belongs to subgroup D of the bZIP family and was localized to the nucleus. To study the role PeTGA1 plays in response to Colletotrichum gloeosporioides, transgenic triploid white poplars overexpressing PeTGA1 were generated. Results showed that poplars with overexpressed PeTGA1 showed a higher effective defense response to C. gloeosporioides than the wild-type plants. A yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeTGA1 could directly bind to the PeSARD1 (P. euphratica SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1) promoter, an important regulator for salicylic acid biosynthesis. The transactivation assays indicated that PeTGA1 activated the expression of PeSARD1, and PR1 (PATHOGENESIS-RELATED 1), a SA marker gene involved in SA signaling. Subsequently, we observed that the PeTGA1 overexpression lines showed elevated SA levels, thereby resulting in the increased resistance to C. gloeosporioides. Taken together, our results indicated that PeTGA1 may exert a key role in plant immunity not only by targeting PeSARD1 thus participating in the SA biosynthesis pathway but also by involving in SA signaling via activating the expression of PR1.


Assuntos
Colletotrichum , Populus , Fatores de Transcrição de Zíper de Leucina Básica/genética , Colletotrichum/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/química , Plantas Geneticamente Modificadas/genética , Populus/genética , Populus/metabolismo , Ácido Salicílico/metabolismo
17.
Plant Physiol ; 189(4): 1943-1960, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604104

RESUMO

Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts-likely due to the lack of induction of amino acids (AAs) transport-can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ornitina/genética , Ornitina/metabolismo , Folhas de Planta/metabolismo , Senescência Vegetal , Fatores de Transcrição/metabolismo
18.
New Phytol ; 235(2): 550-562, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396726

RESUMO

Leaf senescence is the final stage of leaf development and is influenced by numerous internal and environmental factors. CLE family peptides are plant-specific peptide hormones that regulate various developmental processes. However, the role of CLE in regulating Arabidopsis leaf senescence remains unclear. Here, we found that CLE42 is a negative regulator of leaf senescence by using a CRISPR/Cas9-produced CLE mutant collection. The cle42 mutant displayed earlier senescence phenotypes, while overexpression of CLE42 delayed age-dependent and dark-induced leaf senescence. Moreover, application of the synthesized 12-amino-acid peptide (CLE42p) also delayed leaf senescence under natural and dark conditions. CLE42 and CLE41/44 displayed functional redundancy in leaf senescence, and the cle41 cle42 cle44 triple mutant displayed more pronounced earlier senescence phenotypes than any single mutant. Analysis of differentially expressed genes obtained by RNA-Seq methodology revealed that the ethylene pathway was suppressed by overexpressing CLE42. Moreover, CLE42 suppressed ethylene biosynthesis and thus promoted the protein accumulation of EBF, which in turn decreased the function of EIN3. Accordingly, mutation of EIN3/EIL1 or overexpression of EBF1 suppressed the earlier senescence phenotypes of the cle42 mutant. Together, our results reveal that the CLE peptide hormone regulates leaf senescence by communicating with the ethylene pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Senescência Vegetal
19.
J Integr Plant Biol ; 64(3): 771-786, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34990062

RESUMO

Drought is a critical environmental factor which constrains plant survival and growth. Genetic engineering provides a credible strategy to improve drought tolerance of plants. Here, we generated transgenic poplar lines expressing the isopentenyl transferase gene (IPT) under the driver of PtRD26 promoter (PtRD26pro -IPT). PtRD26 is a senescence and drought-inducible NAC transcription factor. PtRD26pro -IPT plants displayed multiple phenotypes, including improved growth and drought tolerance. Transcriptome analysis revealed that auxin biosynthesis pathway was activated in the PtRD26pro -IPT plants, leading to an increase in auxin contents. Biochemical analysis revealed that ARABIDOPSIS RESPONSE REGULATOR10 (PtARR10), one of the type-B ARR transcription factors in the cytokinin pathway, was induced in PtRD26pro -IPT plants and directly regulated the transcripts of YUCCA4 (PtYUC4) and YUCCA5 (PtYUC5), two enzymes in the auxin biosynthesis pathway. Overexpression of PtYUC4 enhanced drought tolerance, while simultaneous silencing of PtYUC4/5 evidently attenuated the drought tolerance of PtRD26pro -IPT plants. Intriguingly, PtYUC4/5 displayed a conserved thioredoxin reductase activity that is required for drought tolerance by deterring reactive oxygen species accumulation. Our work reveals the molecular basis of cytokinin and auxin interactions in response to environmental stresses, and shed light on the improvement of drought tolerance without a growth penalty in trees by molecular breeding.


Assuntos
Populus , Citocininas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA