Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 969
Filtrar
1.
Eur J Pharm Sci ; 200: 106837, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960206

RESUMO

Intractable lymphatic malformations (iLM) pose a significant threat to affected children, demonstrating limited responses to conventional treatments. Sirolimus, effectively inhibiting endothelial cell proliferation in lymphatic vessels, plays a crucial role in iLM treatment. However, the drug's narrow therapeutic window and substantial interindividual variability necessitate customized dosing strategies. This study aims to establish a Population Pharmacokinetic Model (PopPK model) for sirolimus in pediatric iLM patients, identifying quantitative relationships between covariates and sirolimus clearance and volume of distribution. Initial dosages are recommended based on a target concentration range of 5-15 ng/mL. Retrospective data from our institution, encompassing 53 pediatric patients with 275 blood concentration results over the past five years (average age: 4.64 ± 4.19 years), constituted the foundation of this analysis. The final model, adopting a first-order absorption and elimination single-compartment model, retained age as the sole covariate. Results indicated a robust correlation between apparent clearance (CL/F) at 5.56 L/h, apparent volume of distribution (V/F) at 292.57 L, and age. Monte Carlo simulation guided initial dosages for patients aged 0-18 years within the target concentration range. This study presents the first PopPK model using a large Therapeutic Drug Monitoring (TDM) database to describe personalized sirolimus dosing for pediatric iLM patients, contributing to pharmacokinetic guidance and potentially improving long-term clinical outcomes.

2.
Chem Biol Interact ; 399: 111137, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977166

RESUMO

Aberrant activation of thioredoxin reductase (TrxR) is correlated with tumor occurrence and progression, suggesting that TrxR inhibitors can be used as antitumor agents. In this study, we evaluated the anticancer efficacy of eupalinilides B on colorectal cancer cells. Eupalinilides B primarily targeted the conserved selenocysteine 498 residues in TrxR. Besides, it inhibited the enzyme activity in an irreversible manner. After eupalinilides B was used to pharmacologically inhibit TrxR, reactive oxygen species accumulated, and the intracellular redox balance was broken, finally causing oxidative stress-induced tumor cell apoptosis. Significantly, eupalinilides B treatment inhibited in vivo tumor growth. Targeting TrxR by eupalinilides B reveals the new mechanism underlying eupalinilides B and provides insight in developing eupalinilides B as the candidate antitumor chemotherapeutic agent for the treatment of cancer.

3.
Zhen Ci Yan Jiu ; 49(7): 736-742, 2024 Jul 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39020492

RESUMO

OBJECTIVES: To explore the effect of moxibustion on the expression of sorting nexin 5 (SNX5), glutathione peroxidase (GPX4) and ferritin heavy chain (FTH1) in the corpus striatum in mice with Parkinson's disease (PD), so as to explore its mechanisms underlying improvement of PD by ameliorating ferroptosis in the substantia nigra striatum. METHODS: C57BL/6J mice were randomly divided into normal, sham operation, model, and moxibustion groups, with 10 mice in each group. The PD model was established by unilateral injection of 6-hydroxydopamine (3.5 µL) into the right medial forebrain bundle (AP=-1.2 mm, ML=-1.3 mm, DV=-4.75 mm). The mice in the moxibustion group received moxibustion at "Baihui"(GV20) and "Sishencong"(EX-HN1) for 20 min each time, once a day, 6 times a week for 4 weeks. After the intervention, mice received apomorphine rotation behavior detection and pole climbing test. The expression of tyrosine hydroxylase (TH) in the substantia nigra was detected by immunofluorescence, the contents of Fe2+, malondialdehyde (MDA), the ratio of glutathione/oxidized glutathione (GSH/GSSG) in the corpus striatum were detected by using photocolorimetric method, and the expression levels of SNX5 (endocytosomal protein), GPX4 (one of the key targets for inhibiting ferroptosis) and FTH1 proteins and mRNAs in the corpus striatum were detected by Western blot and qPCR, respectively. RESULTS: Behavior tests showed that the pole climbing time and number of body rotation were significantly increased in the model group relevant to the sham operation group (P<0.01), and strikingly decreased in the moxibustion group relevant to the model group (P<0.01). The immunofluorescence intensity of TH in the substantia nigra, the ratio of GSH/GSSG, and the expression levels of GPX4 and FTH1 mRNAs and proteins in the corpus striatum were markedly decreased (P<0.01, P<0.05), while the contents of Fe2+ and MDA and the expression levels of SNX5 mRNA and protein in the corpus striatum significantly increased in the model group relevant to the sham operation group (P<0.01, P<0.05). Compared with the model group, the decreased immunofluorescence intensity of TH, GSH/GSSH, and the expression levels of GPX4 and FTH1 mRNAs and proteins, and the increased contents of Fe2+ and MDA and the expression levels of SNX5 mRNA and protein were reversed in the moxibustion group relevant to the model group (P<0.01, P<0.05). CONCLUSIONS: Moxibustion may improve motor dysfunction in PD mice, which may be related to its effects in down-regulating the expression of SNX5, promoting the synthesis of GSH, decreasing the contents of Fe2+ and MDA, up-regulating the ratio of GSH/GSSG and the expression of GPX4 and FTH1 mRNAs and proteins in the corpus striatum, and inhibiting the occurrence of ferroptosis.


Assuntos
Corpo Estriado , Ferroptose , Camundongos Endogâmicos C57BL , Moxibustão , Neurônios , Doença de Parkinson , Animais , Ferroptose/genética , Camundongos , Corpo Estriado/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Masculino , Humanos , Neurônios/metabolismo , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Regulação para Baixo , Atividade Motora , Modelos Animais de Doenças
4.
Front Neurol ; 15: 1425327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006235

RESUMO

Objectives: Obstructive sleep apnea (OSA) and osteoarthritis (OA) are common comorbidities that significantly impact individuals' quality of life. However, the relationship between OSA and OA remains unclear. This study aims to explore the connection between OSA and OA and evaluate causality using Mendelian randomization (MR). Methods: A total of 12,454 participants from the National Health and Nutrition Examination Survey (2009-2012) were included. OSA participants were identified based on self-reported interviews. The association between OA and OSA was assessed through multivariable logistic regression analysis. A two-sample MR was employed to investigate the relationship between OSA and OA, specifically hip OA and knee OA, utilizing the inverse variance-weighted (IVW) approach. Results: Based on the observational study, individuals with OSA exhibited a higher risk of OA (OR = 1.67, 95% CI = 1.40-1.98). IVW demonstrated that the risk of OA (OR = 1.13, 95% CI: 1.05-1.21, p = 0.001), hip OA (OR = 1.11, 95% CI: 1.04-1.18, p = 0.002), and knee OA (OR = 1.08, 95% CI: 1.02-1.14, p = 0.005) was significantly associated with OSA. Reverse MR analyses indicated no effect of OA on OSA. Additionally, body mass index (BMI) was found to mediate 36.9% (95% CI, 4.64-73.2%, p = 0.026) of the OSA effects on OA risk. Conclusion: The cross-sectional observational analysis unveiled noteworthy associations between OSA and OA. Meanwhile, findings from the MR study provide support for a causal role.

5.
Aging Cell ; : e14260, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994634

RESUMO

Amyloid plaques, a major pathological hallmark of Alzheimer's disease (AD), are caused by an imbalance between the amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein (APP). BACE1 cleavage of APP is the rate-limiting step for amyloid-ß production and plaque formation in AD. Although the alteration of BACE1 expression in AD has been investigated, the underlying mechanisms remain unknown. In this study, we determined MEIS2 was notably elevated in AD models and AD patients. Alterations in the expression of MEIS2 can modulate the levels of BACE1. MEIS2 downregulation improved the learning and memory retention of AD mice and decreased the number of amyloid plaques. MEIS2 binds to the BACE1 promoter, positively regulates BACE1 expression, and accelerates APP amyloid degradation in vitro. Therefore, our findings suggest that MEIS2 might be a critical transcription factor in AD, since it regulates BACE1 expression and accelerates BACE1-mediated APP amyloidogenic cleavage. MEIS2 is a promising early intervention target for AD treatment.

6.
Physiol Mol Biol Plants ; 30(6): 945-956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974357

RESUMO

Camellia oleifera is a crucial cash crop in the southern region of China. Timely flowering is a crucial characteristic for maximizing crop productivity. Nevertheless, the cold temperature and wet weather throughout the fall and winter seasons in South China impact the timing of flowering and the yield produced by C. oleifera. This study examined the miRNAs, transcriptomes, and phytohormones that are part of the flowering time regulatory networks in distinct varieties of C. oleifera (Sep, Oct, and Nov). This study provides evidence that phytohormones significantly impact the timing of flowering in C. oleifera leaves. There is a positive correlation between the accumulation variations of zeatin (cZ), brassinolide (BL), salicylic acid (SA), 1-amino cyclopropane carboxylic acid (ACC), and jasmonic acid (JA) and flowering time. This means that blooming occurs earlier when the quantity of these substances in leaves increases. Abscisic acid (ABA), trans-zeatin-riboside (tZR), dihydrozeatin (dh-Z), and IP (N6-Isopentenyladenine) exhibit contrasting effects. Furthermore, both miR156 and miR172 play a crucial function in regulating flowering time in C. oleifera leaves by modulating the expression of SOC1, primarily through the miR156-SPL and miR172-AP2 pathways. These findings establish a strong basis for future research endeavors focused on examining the molecular network associated with the flowering period of C. oleifera and controlling flowering time management through external treatments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01473-2.

7.
Rapid Commun Mass Spectrom ; 38(18): e9865, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38982886

RESUMO

RATIONALE: The application of infliximab (IFX) to immune-mediated disease is limited by the significant individual variability and associated clinical nonresponse, emphasizing the importance of therapeutic drug monitoring (TDM). Because of the cross-reactivity, limited linear range, and high costs, the clinical application of the previous reported methods was limited. Here, an improved high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method was developed to address the issues. METHODS: This study developed an improved bioanalytical HPLC-MS/MS method coupling nanosurface and molecular-orientation limited proteolysis technology. The commercially available compound P14R was selected as the internal standard. This method was developed with fewer volume of reagents and was thoroughly validated. The validated method was applied to TDM in pediatric inflammatory bowel disease (IBD). RESULTS: Chromatography was performed using a Shim-pack GISS-HP C18 metal-free column (3 µm, 2.1 × 100 mm) with a gradient elution of 0.1% formic acid in water and acetonitrile at 0.4 mL/min. Detection and quantitation were performed using electrospray ionization (ESI) and multiple reaction monitoring in the positive ion mode. The method was validated to demonstrate its selectivity, linearity, accuracy, precision, recovery, matrix effect, and stability. The method exhibited a linear dynamic range of 0.3-100 µg/mL, with intra- and inter-day precision and relative errors below 15%. The recovery and matrix effect were measured as 87.28%-89.72% and 41.98%-67.17%, respectively, which were effectively compensated by the internal standard. A total of 32 samples collected from 24 pediatric patients with IBD were analyzed using the validated method, and only 46.9% achieved the reported targeted trough level. CONCLUSION: This study developed an improved HPLC-MS/MS method for the quantitative determination of IFX concentration in human plasma. The accurate, reliable, and cost-effective method was validated and utilized in the analysis of clinical samples. The results confirmed the importance of TDM on IFX and the clinical application prospects of the improved method.


Assuntos
Monitoramento de Medicamentos , Infliximab , Espectrometria de Massas em Tandem , Infliximab/sangue , Humanos , Monitoramento de Medicamentos/métodos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Criança , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/sangue , Reprodutibilidade dos Testes , Limite de Detecção , Adolescente , Modelos Lineares , Masculino
8.
Front Pharmacol ; 15: 1399963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903997

RESUMO

Background: Targeted agents are widely utilized in the treatment of ulcerative colitis (UC). Hence, a comprehensive understanding of comparative drug efficacy in UC is of great importance for drug development and clinical practice. Our objective was the quantitative evaluation of the comparative efficacy of targeted agents for UC. Methods: Three mathematical models were developed based on data from randomized controlled trials in patients with moderate-to-severe UC to describe the time-course and dose-response of efficacy defined as clinical remission, clinical response, and endoscopic improvement, as well as the placebo effect. The covariate effects were further evaluated. Model simulation was performed in a hypothetical population to compare the efficacies across different drugs. Results: The analysis dataset was composed of data from 35 trials of 12 drugs in UC. Time-response relationships were evaluated that indicated a gradual onset of drug efficacy in adalimumab, ozanimod, and Janus kinase (JAK) inhibitors. The dose-response relationships were estimated for each drug respectively. Patient age, disease duration, baseline weight, prior tumor necrosis factor (TNF) inhibitor exposure, and current treatment with corticosteroid showed an impact on efficacy, suggesting that younger patients with shorter UC duration without prior anti-TNF treatment and current corticosteroids therapy tend to display greater treatment effects. Conclusion: This study developed three longitudinal models for UC to quantitatively describe the efficacy of targeted agents, as well as the influencing factors of efficacy. Infliximab and upadacitinib were determined to be the most effective biological and small targeted molecules, respectively. These findings may provide valuable implications for guiding future decision-making in clinical practice and drug development for UC.

9.
Plant Dis ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885027

RESUMO

Kiwifruits (Actinidia chinensis) are among the most widely planted fruit in Jiangxi Province, China. Infected kiwifruits of the cultivars 'Hongyang' and 'Jinyan' were obtained from a commercial orchard in Fengxin county, Jiangxi Province (28°67' N; 115°42' E) from September to November 2022. The 1200 kiwifruits were collected from cold storage (cold stored for 3 months at 2°C), and moved to room temperatures (15 to 20°C), approximately 20% had symptoms of postharvest soft rot 7 days later. The infected fruits had brown or dark gray spots on the peel. Most were round or oval, with a diameter of approximately 1~3 cm. The pulp was milky white, and there was a waterlogged ring at the junction of decay. The pathogen was isolated by removing several small pieces (3×3 mm) of infected tissue from the diseased kiwifruits, which were sterilized with 75% ethanol for 30 s, dipped in 1% NaClO for 1 min, and rinsed three times with sterile distilled water. These pieces were transferred onto potato dextrose agar (PDA) and incubated for 5 days at 28°C, 75% relative humidity (RH), separated, and repurified. Eight unidentified isolates with similar morphology were obtained on PDA (D3-1 to D3-8). These isolates had abundant aerial fluffy mycelia. The colonies were white during the early stage of culture and turned light purple in the later stage. The mycelia grew 5.8 mm day-1 (n=5) on average and produced abundant conidia 10 days later. The microconidia were solitary, transparent, ovoid, with 0 to 1 septa, and 3.6 to 11.2 × 1.6 to 3.5 µm (average 6.5 × 2.9 µm, n = 50). The macroconidia were sickle-shaped, slender and slightly curved, with 3 to 5 septa, and 22.3 to 53.9 × 2.6 to 5.4 µm (average 39.5 × 4.3 µm, n = 50). Chlamydospores were absent. The morphological characteristics enabled the identification of the pathogen as Fusarium spp. (Leslie and Summerell, 2006). Isolate D3-2 was further confirmed, and the primers ITS1/ITS4 (White et al. 1990), 5F2/7CR and EF1/EF2 (O'Donnell et al. 2022) were used to amplify the internal transcribed spacer (ITS) region, RNA polymerase II largest subunit (RPB2) gene and translation elongation factor-1 alpha regions (TEF-1α). The ITS (accession no. PP077075), RPB2 (PP566653) and TEF-1α (PP566654) sequences shared 99.62 to 100% identities with ITS (ON564593.1), RPB2 (ON734380.1) and TEF-1α (ON697186.1) of F. fujikuroi from NCBI, respectively. Thus, the pathogen was identified as F. fujikuroi based on morphological and molecular characteristics. Each of the three isolates was inoculated on surface-disinfected (75% ethanol, 5 min) disease-free kiwifruits of cv. 'Jinyan' and 'Hongyang'. The six kiwifruits were pierced by a sterile inoculation needle and inoculated with 20 µl spore suspension (1×106 spores/ml), and six kiwifruits were treated with spore suspension without any wounds, four control fruits were inoculated with sterile distilled water. All the fruits were sealed in a storage box, kept at an RH of 90%-95%, and incubated at a constant temperature of 28°C for 5 days. After 3 days, the fruit rotted at the inoculation site, and after 5 days, the lesions gradually increased, and the symptoms were the same as those of the original sample. The control fruits remained disease-free. The pathogenicity tests were repeated three times. Koch's postulates were completed by reisolating the fungus from infected kiwifruits, which was identified as F. fujikuroi by sequencing. Although F. solani (Yang et al. 2018) and F. acuminatum (Wang et al. 2015) have been previously reported to rot kiwifruits in China, this is the first report of F. fujikuroi causing postharvest rot on kiwifruits in China. This discovery can alert agronomists to prevent and control this pathogen.

10.
Eur J Med Res ; 29(1): 350, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943222

RESUMO

Cancer, a prevalent and complex disease, presents a significant challenge to the medical community. It is characterized by irregular cell differentiation, excessive proliferation, uncontrolled growth, invasion of nearby tissues, and spread to distant organs. Its progression involves a complex interplay of several elements and processes. Extracellular vesicles (EVs) serve as critical intermediaries in intercellular communication, transporting critical molecules such as lipids, RNA, membrane, and cytoplasmic proteins between cells. They significantly contribute to the progression, development, and dissemination of primary tumors by facilitating the exchange of information and transmitting signals that regulate tumor growth and metastasis. However, EVs do not have a singular impact on cancer; instead, they play a multifaceted dual role. Under specific circumstances, they can impede tumor growth and influence cancer by delivering oncogenic factors or triggering an immune response. Furthermore, EVs from different sources demonstrate distinct advantages in inhibiting cancer. This research examines the biological characteristics of EVs and their involvement in cancer development to establish a theoretical foundation for better understanding the connection between EVs and cancer. Here, we discuss the potential of EVs from various sources in cancer therapy, as well as the current status and future prospects of engineered EVs in developing more effective cancer treatments.


Assuntos
Vesículas Extracelulares , Neoplasias , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/metabolismo , Comunicação Celular , Animais
11.
Cell Genom ; 4(7): 100583, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38889719

RESUMO

CRISPR mutagenesis screens conducted with SpCas9 and other nucleases have identified certain cis-regulatory elements and genetic variants but at a limited resolution due to the absence of protospacer adjacent motif (PAM) sequences. Here, leveraging the broad targeting scope of the near-PAMless SpRY variant, we have demonstrated that saturated SpRY mutagenesis and base editing screens can faithfully identify functional regulatory elements and essential genetic variants for target gene expression at single-base resolution. We further extended this methodology to investigate a genome-wide association study (GWAS) locus at 10q22.1 associated with a red blood cell trait, where we identified potential enhancers regulating HK1 gene expression, despite not all of these enhancers exhibiting typical chromatin signatures. More importantly, our saturated base editing screens pinpoint multiple causal variants within this locus that would otherwise be missed by Bayesian statistical fine-mapping. Our approach is generally applicable to functional interrogation of all non-coding genomic elements while complementing other high-coverage CRISPR screens.


Assuntos
Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Mutagênese , Elementos Facilitadores Genéticos/genética
13.
Rev Neurosci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38889403

RESUMO

Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.

14.
Reprod Biol Endocrinol ; 22(1): 69, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886751

RESUMO

BACKGROUND: Among the POSEIDON criteria, group 3 and group 4 have an expected low prognosis. For those patients with inadequate ovary reserve, embryo accumulated from consecutive oocyte retrieval cycles for multiple frozen-thawed embryo transfers (FET) has become more common. It is necessary to inform them of the pregnancy outcomes after single or multiple FET cycles before the treatment. However few studies about cumulative live birth rate (CLBR) for those with low prognosis have been reported. METHODS: This retrospective study included 4712 patients undergoing frozen embryo transfer cycles from July 2015 to August 2020. Patients were stratified as POSEIDON group 3, group 4, control 1 group (< 35 years) and control 2 group (≥ 35 years). The primary outcome is CLBRs up to six FET cycles and the secondary outcomes were LBRs per transfer cycle. Optimistic approach was used for the analysis of CLBRs and the depiction of cumulative incidence curves. RESULTS: Under optimistic model analyses, control 1 group exhibited the highest CLBR (93.98%, 95%CI 91.63-95.67%) within 6 FET cycles, followed by the CLBR from women in POSEIDON group 3(92.51%, 95%CI 77.1-97.55)was slightly lower than that in control 1 group. The CLBR of POSEIDON group 4(55% ,95%CI 39.34-70.66%)was the lowest and significantly lower than that of control 2 group(88.7%, 95%CI 80.68-96.72%). Further, patients in POSEIDON group 4 reached a CLBR plateau after 5 FET cycles. CONCLUSIONS: The patients of POSEIDON group 3 may not be considered as traditional "low prognosis" in clinical practice as extending the number of FET cycles up to 6 can archive considerably CLBR as control women. While for the POSEIDON group 4, a simple repeat of the FET cycle is not recommended after four failed FET cycles, some strategies such as PGT-A may be beneficial.


Assuntos
Hormônio Antimülleriano , Coeficiente de Natalidade , Criopreservação , Transferência Embrionária , Nascido Vivo , Humanos , Feminino , Transferência Embrionária/métodos , Transferência Embrionária/estatística & dados numéricos , Transferência Embrionária/tendências , Gravidez , Adulto , Estudos Retrospectivos , Prognóstico , Hormônio Antimülleriano/sangue , Nascido Vivo/epidemiologia , Taxa de Gravidez , Reserva Ovariana/fisiologia , Fatores Etários , Fertilização in vitro/métodos , Resultado da Gravidez/epidemiologia
15.
Water Sci Technol ; 89(11): 2867-2879, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877618

RESUMO

In a fluid environment, biofilms usually form and grow into streamers attached to solid surfaces. Existing research on single streamers studied their formation and failure modes. In the experiment on biofilm growth in a microfluidic channel, we found that rings composed of bacteria and an extracellular matrix are important elements on a mesoscopic scale. In the fluid environment, the failure of these ring elements causes damage to streamers. We simulated the growth and deformation of the ring structure in the micro-channel using multi-agent simulation and fluid-structure coupling of a porous elastic body. Based on this, we simulated the biofilm evolution involving multi-ring deformation, which provides a new length scale to study the biofilm streamer dynamics in fluid environments.


Assuntos
Biofilmes , Biofilmes/crescimento & desenvolvimento , Microfluídica , Técnicas Analíticas Microfluídicas/instrumentação
16.
Toxics ; 12(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38922058

RESUMO

Ganoderma triterpenes and spore powder have shown promising results in mitigating cadmium-induced renal and hepatic injuries. Ganoderma lucidum active peptide GLP4 is a natural protein with dual antioxidant activities derived from the mycelium of Ganoderma lucidum. However, its efficacy in alleviating cadmium-induced lung injury remains unexplored. This study aims to investigate the protective effects of GLP4 against cadmium-induced lung injury in mice. Mice were exposed to cadmium chloride via nebulization to induce lung injury. The protective effect of GLP4 was assessed by measuring the total cell count in BALF, levels of inflammatory cytokines, and the expression of NLRP3 in lung tissues a through histopathological examination of lung tissue changes. The results showed that GLP4 significantly mitigated histopathological damage in lung tissues, decreased the secretion of inflammatory cytokines, and reduced the expression of NLRP3, which was elevated in cadmium-exposed mice. In vitro studies further revealed that GLP4 inhibited the cadmium-induced activation of the NLRP3 inflammasome. Notably, acute cadmium exposure by the respiratory tract did not affect the liver and kidneys of the mice. The findings suggest that GLP4 reduces cadmium-induced lung injury in mice by inhibiting the activation of the NLRP3 inflammasome, which provides a theoretical foundation for using Ganoderma lucidum as a preventive and therapeutic agent against cadmium poisoning.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38818583

RESUMO

Alcoholic liver disease (ALD) poses a significant health challenge, so comprehensive research efforts to improve our understanding and treatment strategies are needed. However, the development of effective treatments is hindered by the limitation of existing liver disease models. Liver organoids, characterized by their cellular complexity and three-dimensional (3D) tissue structure closely resembling the human liver, hold promise as ideal models for liver disease research. In this study, we use a meticulously designed protocol involving the differentiation of human induced pluripotent stem cells (hiPSCs) into liver organoids. This process incorporates a precise combination of cytokines and small molecule compounds within a 3D culture system to guide the differentiation process. Subsequently, these differentiated liver organoids are subject to ethanol treatment to induce ALD, thus establishing a disease model. A rigorous assessment through a series of experiments reveals that this model partially recapitulates key pathological features observed in clinical ALD, including cellular mitochondrial damage, elevated cellular reactive oxygen species (ROS) levels, fatty liver, and hepatocyte necrosis. In addition, this model offers potential use in screening drugs for ALD treatment. Overall, the liver organoid model of ALD, which is derived from hiPSC differentiation, has emerged as an invaluable platform for advancing our understanding and management of ALD in clinical settings.

18.
Front Immunol ; 15: 1400744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799446

RESUMO

Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/diagnóstico , Prognóstico , Biomarcadores Tumorais/genética , RNA não Traduzido/genética , RNA Longo não Codificante/genética , Animais , MicroRNAs/genética
19.
Front Immunol ; 15: 1346587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690261

RESUMO

Extracellular vesicles (EVs) are important cell-to-cell communication mediators. This paper focuses on the regulatory role of tumor-derived EVs on macrophages. It aims to investigate the causes of tumor progression and therapeutic directions. Tumor-derived EVs can cause macrophages to shift to M1 or M2 phenotypes. This indicates they can alter the M1/M2 cell ratio and have pro-tumor and anti-inflammatory effects. This paper discusses several key points: first, the factors that stimulate macrophage polarization and the cytokines released as a result; second, an overview of EVs and the methods used to isolate them; third, how EVs from various cancer cell sources, such as hepatocellular carcinoma, colorectal carcinoma, lung carcinoma, breast carcinoma, and glioblastoma cell sources carcinoma, promote tumor development by inducing M2 polarization in macrophages; and fourth, how EVs from breast carcinoma, pancreatic carcinoma, lungs carcinoma, and glioblastoma cell sources carcinoma also contribute to tumor development by promoting M2 polarization in macrophages. Modified or sourced EVs from breast, pancreatic, and colorectal cancer can repolarize M2 to M1 macrophages. This exhibits anti-tumor activities and offers novel approaches for tumor treatment. Therefore, we discovered that macrophage polarization to either M1 or M2 phenotypes can regulate tumor development. This is based on the description of altering macrophage phenotypes by vesicle contents.


Assuntos
Vesículas Extracelulares , Ativação de Macrófagos , Macrófagos , Neoplasias , Animais , Humanos , Comunicação Celular/imunologia , Citocinas/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/metabolismo , Microambiente Tumoral/imunologia
20.
Int Immunopharmacol ; 135: 112323, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788448

RESUMO

OBJECTIVE: Glucocorticoid (GC) administration has been associated with adverse drug reactions (ADRs) affecting multiple organ systems. While long-term use is widely recognized as a significant independent predictor of ADRs, it is important to note that even short-term use can lead to serious ADRs. The considerable inter-individual variability in ADRs occurrence may be influenced by genetic factors. This study, we present a case of a child who experienced significant weight gain and osteoporosis, following a brief administration of GC. METHODS: To comprehensively investigate the underlying mechanisms, we conducted a genomic analysis utilizing the whole exome sequencing (WES) technique. This analysis encompassed the examination of phase I and phase II metabolism, influx transport, efflux transport, and drug targeting. Additionally, a comprehensive analysis was conducted on a cohort of 52,119 children to determine their ABCB1 rs1045642 genotype, and an additional 37,884 children were tested for their CYP3A5 rs776746 genotype. RESULTS: The pharmacogenetic analysis unveiled the presence of a high-risk variant in ABCB1 rs1045642 and a slow metabolism variant in CYP3A5 rs776746, both of which have the potential to substantially contribute to ADRs. The findings of this study indicate that the prevalence of ABCB1 rs1045642 CT type among patients was 47.58%, with TT type accounting for 15.69 % and CC type accounting for 36.73 %. Furthermore, the distribution of CYP3A5 rs776746 CC genotype was observed in 50.54 % of individuals, while CT and TT genotypes were present in 41.15 % and 8.31 % of the population respectively. The distribution of ABCB1 and CYP3A5 genotypes among the pediatric population in China displays notable features. Specifically, for the ABCB1 rs1045642 genotype, less than 50 % of children exhibit intermediate metabotypes. Conversely, among children with the CYP3A5 rs776746 genotype, the predominant cause for enzyme activity is the slow metabolic type, accounting for up to 90 % of cases. CONCLUSIONS: Consequently, it is imperative to thoroughly evaluate the impact of allele mutation on the effectiveness and safety of glucocorticoid drugs or other medications metabolized by the ABCB1 and CYP3A5, particularly in the context of Chinese pediatric patients.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Citocromo P-450 CYP3A , Glucocorticoides , Humanos , Glucocorticoides/uso terapêutico , Glucocorticoides/efeitos adversos , Citocromo P-450 CYP3A/genética , Criança , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Masculino , Feminino , Sequenciamento do Exoma , Genótipo , Osteoporose/genética , Osteoporose/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Pré-Escolar , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA