Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664789

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteócitos , Osteogênese , Tropomiosina , Animais , Masculino , Camundongos , Adipogenia , Diferenciação Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoclastos/metabolismo , Osteócitos/metabolismo , Osteoporose/metabolismo , Tropomiosina/metabolismo , Tropomiosina/genética
2.
Mol Med ; 30(1): 41, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519941

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a prevalent disease affecting elderly men, with chronic inflammation being a critical factor in its development. Omentin-1, also known as intelectin-1 (ITLN-1), is an anti-inflammatory protein primarily found in the epithelial cells of the small intestine. This study aimed to investigate the potential of ITLN-1 in mitigating BPH by modulating local inflammation in the prostate gland. METHODS: Our investigation involved two in vivo experimental models. Firstly, ITLN-1 knockout mice (Itln-1-/-) were used to study the absence of ITLN-1 in BPH development. Secondly, a testosterone propionate (TP)-induced BPH mouse model was treated with an ITLN-1 overexpressing adenovirus. We assessed BPH severity using prostate weight index and histological analysis, including H&E staining, immunohistochemistry, and enzyme-linked immunosorbent assay. In vitro, the impact of ITLN-1 on BPH-1 cell proliferation and inflammatory response was evaluated using cell proliferation assays and enzyme-linked immunosorbent assay. RESULTS: In vivo, Itln-1-/- mice exhibited elevated prostate weight index, enlarged lumen area, and higher TNF-α levels compared to wild-type littermates. In contrast, ITLN-1 overexpression in TP-induced BPH mice resulted in reduced prostate weight index, lumen area, and TNF-α levels. In vitro studies indicated that ITLN-1 suppressed the proliferation of prostate epithelial cells and reduced TNF-α production in macrophages, suggesting a mechanism involving the inhibition of macrophage-mediated inflammation. CONCLUSION: The study demonstrates that ITLN-1 plays a significant role in inhibiting the development of BPH by reducing local inflammation in the prostate gland. These findings highlight the potential of ITLN-1 as a therapeutic target in the management of BPH.


Assuntos
Hiperplasia Prostática , Humanos , Masculino , Camundongos , Animais , Idoso , Hiperplasia Prostática/genética , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Fator de Necrose Tumoral alfa , Extratos Vegetais/farmacologia , Próstata/metabolismo , Próstata/patologia , Inflamação/patologia
3.
Sex Med ; 12(1): qfae010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505341

RESUMO

Background: The causal relationship between certain lifestyle factors and erectile dysfunction (ED) is still uncertain. Aim: The study sought to investigate the causal effect of 9 life factors on ED through 2-sample single-variable Mendelian randomization (SVMR) and multivariable Mendelian randomization (MVMR). Methods: Genetic instruments to proxy 9 risk factors were identified by genome-wide association studies. The genome-wide association studies estimated the connection of these genetic variants with ED risk (n = 223 805). We conducted SVMR, inverse variance-weighting, Cochran's Q, weighted median, MR-Egger, MR-PRESSO (Mendelian Randomization Pleiotropy RESidual Sum and Outlier), and MVMR analyses to explore the total and direct relationship between life factors and ED. Outcomes: The primary outcome was defined as self or physician-reported ED, or using oral ED medication, or a history of surgery related to ED. Results: In SVMR analyses, suggestive associations with increased the risk of ED were noted for ever smoked (odds ratio [OR], 5.894; 95% confidence interval [CI], 0.469 to 3.079; P = .008), alcohol consumption (OR, 1.495; 95% CI, 0.044 to 0.760; P = .028) and body mass index (BMI) (OR, 1.177; 95% CI, 0.057 to 0.268; P = .003). Earlier age at first intercourse was significantly related to reduced ED risk (OR, 0.659; 95% CI, -0.592 to -0.244; P = 2.5 × 10-6). No strong evidence was found for the effect of coffee intake, time spent driving, physical activity, and leisure sedentary behaviors on the incidence of ED (All P > .05). The result of MVMR analysis for BMI (OR, 1.13; 95% CI, 1.01 to 1.25; P = .045) and earlier age at first intercourse (OR, 0.77; 95% CI, 0.56 to 0.99; P = .018) provided suggestive evidence for the direct impact on ED, while no causal factor was detected for alcoholic drinks per week and ever smoked. Clinical implications: This study provides evidence for the impact of certain modifiable lifestyle factors on the development of ED. Strengths and limitations: We performed both SVMR and MVMR to strengthen the causal relationship between exposures and outcomes. However, the population in this study was limited to European ancestry. Conclusion: Ever smoked, alcoholic drinks per week, BMI, and age first had sexual intercourse were causally related to ED, while the potential connection between coffee intake, physical activity, recreational sedentary habits, and increased risk of ED needs to be further confirmed.

4.
Nat Commun ; 14(1): 8461, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123537

RESUMO

Endothelial cells (ECs) and bone marrow stromal cells (BMSCs) play crucial roles in supporting hematopoiesis and hematopoietic regeneration. However, whether ECs are a source of BMSCs remains unclear. Here, we evaluate the contribution of endothelial-to-mesenchymal transition to BMSC generation in postnatal mice. Single-cell RNA sequencing identifies ECs expressing BMSC markers Prrx1 and Lepr; however, this could not be validated using Prrx1-Cre and Lepr-Cre transgenic mice. Additionally, only a minority of BMSCs are marked by EC lineage tracing models using Cdh5-rtTA-tetO-Cre or Tek-CreERT2. Moreover, Cdh5+ BMSCs and Tek+ BMSCs show distinct spatial distributions and characteristic mesenchymal markers, suggestive of their origination from different progenitors rather than CDH5+ TEK+ ECs. Furthermore, myeloablation induced by 5-fluorouracil treatment does not increase Cdh5+ BMSCs. Our findings indicate that ECs hardly convert to BMSCs during homeostasis and myeloablation-induced hematopoietic regeneration, highlighting the importance of using appropriate genetic models and conducting careful data interpretation in studies concerning endothelial-to-mesenchymal transition.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Camundongos , Animais , Medula Óssea , Camundongos Transgênicos
5.
Mater Today Bio ; 23: 100854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024846

RESUMO

Bone regeneration heavily relies on bone marrow mesenchymal stem cells (BMSCs). However, recruiting endogenous BMSCs for in situ bone regeneration remains challenging. In this study, we developed a novel BMSC-aptamer (BMSC-apt) functionalized hydrogel (BMSC-aptgel) and evaluated its functions in recruiting BMSCs and promoting bone regeneration. The functional hydrogels were synthesized between maleimide-terminated 4-arm polyethylene glycols (PEG) and thiol-flanked PEG crosslinker, allowing rapid in situ gel formation. The aldehyde group-modified BMSC-apt was covalently bonded to a thiol-flanked PEG crosslinker to produce high-density aptamer coverage on the hydrogel surface. In vitro and in vivo studies demonstrated that the BMSC-aptgel significantly increased BMSC recruitment, migration, osteogenic differentiation, and biocompatibility. In vivo fluorescence tomography imaging demonstrated that functionalized hydrogels effectively recruited DiR-labeled BMSCs at the fracture site. Consequently, a mouse femur fracture model significantly enhanced new bone formation and mineralization. The aggregated BMSCs stimulated bone regeneration by balancing osteogenic and osteoclastic activities and reduced the local inflammatory response via paracrine effects. This study's findings suggest that the BMSC-aptgel can be a promising and effective strategy for promoting in situ bone regeneration.

6.
Inflamm Res ; 72(10-11): 2053-2072, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37816881

RESUMO

OBJECTIVE: Nanoparticles (NPs) hold a great promise in combating rheumatoid arthritis, but are often compromised by their toxicities because the currently used NPs are usually synthesized by chemical methods. Our group has previously fabricated Ångstrom-scale silver particles (AgÅPs) and demonstrated the anti-tumor and anti-sepsis efficacy of fructose-coated AgÅPs (F-AgÅPs). This study aimed to uncover the efficacy and mechanisms of F-AgÅPs for arthritis therapy. METHODS: We evaluated the efficacy of F-AgÅPs in collagen-induced arthritis (CIA) mice. We also compared the capacities of F-AgÅPs, the commercial AgNPs, and the clinical drug methotrexate (MTX) in protecting against K/BxN serum-transfer arthritis (STA) mice. Moreover, we evaluated the effects of F-AgÅPs and AgNPs on inflammation, osteoclast formation, synoviocytes migration, and matrix metalloproteinases (MMPs) production in vitro and in vivo. Meanwhile, the toxicities of F-AgÅPs and AgNPs in vitro and in vivo were also tested. RESULTS: F-AgÅPs significantly prevented bone erosion, synovitis, and cartilage damage, attenuated rheumatic pain, and improved the impaired motor function in mouse models of CIA or STA, the anti-rheumatic effects of which were comparable or stronger than AgNPs and MTX. Further studies revealed that F-AgÅPs exhibited similar or greater inhibitory abilities than AgNPs to suppress inflammation, osteoclast formation, synoviocytes migration, and MMPs production. No obvious toxicities were observed in vitro and in vivo after F-AgÅPs treatment. CONCLUSIONS: F-AgÅPs can effectively alleviate arthritis without notable toxicities and their anti-arthritic effects are associated with the inhibition of inflammation, osteoclastogenesis, synoviocytes migration, and MMPs production. Our study suggests the prospect of F-AgÅPs as an efficient and low-toxicity agent for arthritis therapy.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Prata/uso terapêutico , Osteogênese , Inflamação/tratamento farmacológico , Inflamação/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Colágeno , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Metaloproteinases da Matriz
7.
Int J Biol Macromol ; 253(Pt 6): 127267, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37820903

RESUMO

Diabetes mellitus (DM) as one chronic metabolic disease was greatly increased over recent decades. The major agents treating diabetes have noticeable side effects as well as the tolerability problems. The bioactive dietary polysaccharides from abundant natural resources exhibit good hypoglycemic effect with rare adverse effects, which might serve as a candidate to prevent and treat diabetes. However, the correlations between the hypoglycemic mechanism of polysaccharides and their structure were not mentioned in several studies, what's more, most of the current hypoglycemic studies on polysaccharides were based on in vitro and in vivo experiments, and there was a lack of knowledge about the effects in human clinical trials. The aim of this review is to discuss recent literature about the variety of dietary polysaccharides with hypoglycemic activity, as well the mechanism of action and the structure-function relationship are highlighted. Meanwhile, the application of dietary polysaccharides in functional foods and clinical medicine are realized with an in-depth understanding. So as to promote the exploration of dietary polysaccharides in low glycemic healthy foods or clinical medicine to prevent and treat diabetes.


Assuntos
Diabetes Mellitus , Hipoglicemiantes , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Diabetes Mellitus/tratamento farmacológico , Carboidratos da Dieta/uso terapêutico , Alimento Funcional
8.
Bone Res ; 11(1): 45, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587136

RESUMO

Due to increasing morbidity worldwide, fractures are becoming an emerging public health concern. This study aimed to investigate the effect of metformin on the healing of osteoporotic as well as normal fractures. Type H vessels have recently been identified as a bone-specific vascular subtype that supports osteogenesis. Here, we show that metformin accelerated fracture healing in both osteoporotic and normal mice. Moreover, metformin promoted angiogenesis in vitro under hypoxia as well as type H vessel formation throughout fracture healing. Mechanistically, metformin increased the expression of HIF-1α, an important positive regulator of type H vessel formation, by inhibiting the expression of YAP1/TAZ in calluses and hypoxia-cultured human microvascular endothelial cells (HMECs). The results of HIF-1α or YAP1/TAZ interference in hypoxia-cultured HMECs using siRNA further suggested that the enhancement of HIF-1α and its target genes by metformin is primarily through YAP1/TAZ inhibition. Finally, overexpression of YAP1/TAZ partially counteracted the effect of metformin in promoting type H vessel-induced angiogenesis-osteogenesis coupling during fracture repair. In summary, our findings suggest that metformin has the potential to be a therapeutic agent for fractures by promoting type H vessel formation through YAP1/TAZ inhibition.

9.
Front Med (Lausanne) ; 10: 1170520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293306

RESUMO

Background: Hemoporfin-mediated photodynamic therapy (PDT) is an effective treatment for port-wine stains (PWS), and pain is the main adverse effect of this therapy. General anesthesia is commonly used for pain management during PDT, but the effect of general anesthetics on the subsequent treatment efficacy of PDT in PWS has not been reported. Objectives: To assess the use of general anesthesia combined with PDT compared with PDT alone in 207 PWS patients, and to provide further safety and efficacy data on this combined therapy. Methods: Propensity score matching (PSM) was used at a 2:1 ratio to create a general anesthetic group (n = 138) and a highly comparable nonanesthetic group (n = 69). The clinical outcomes were evaluated, and the treatment reactions and adverse effects were recorded after one treatment with PDT. Results: After matching, there was no significant difference in the demographic data of the patients in the two groups (p > 0.05), while the treatment efficacy was significantly higher in the general anesthetic group than in the nonanesthetic group (76.81 vs. 56.52%, p < 0.05). Moreover, logistic regression analysis confirmed that patients receiving general anesthesia showed an association with a good response to PDT (OR = 3.06; 95% CI, 1.57-6.00; p = 0.0011). Purpura lasted longer in the general anesthetic group, but the other treatment reactions and adverse effects were similar in the two groups (p > 0.05). No serious systemic adverse reactions were observed. Conclusion: We recommend this combined therapy, which is associated with painless, as a high efficacy treatment option for PWS patients, especially for patients with a poor response to multiple PDT alone treatments.

10.
Int Wound J ; 20(8): 3131-3139, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37143445

RESUMO

This paper describes a modified method of applying unidirectional barbed sutures to treat the incisions of the single-port video-assisted thoracoscopic surgery (VATS) and discusses its safety and feasibility. This was a retrospective analysis of 108 patients who underwent single-port VATS admitted to the Department of Thoracic Surgery, the China-Japan Union Hospital of Jilin University, from April 2019 to April 2020. The experimental group (65 patients) was given unidirectional barbed sutures (V-Loc™ sutures) to treat the incision, and the control group (43 patients) had a skin stapler to treat the incision. The complications related to the incisions of the two groups were compared. There was no statistically significant difference between the experimental and control groups regarding incisional infection, incisional splitting, fat liquefaction, and incisional resewing. The pleural fluid outflow from the drainage orifice after removal of the chest tube (0 cases in the experimental group and 7 cases in the control group, P = 0.001) was significantly lower in the experimental group than in the control group. The scores of the scars showed that the experimental group was significantly better than the control group. The modified method of treating the incisions of the single-port VATS with V-Loc™ sutures has good efficacy and safety. It reduces the incidence of pleural fluid outflow from the drainage orifice after removal of the chest tube compared with the traditional stapler suture method, and it has superior cosmetic outcomes.


Assuntos
Cicatriz , Cirurgia Torácica Vídeoassistida , Humanos , Estudos Retrospectivos , Drenagem , Suturas
11.
Physiol Plant ; 175(2): e13880, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36840627

RESUMO

At the outer canopy, the white leaves of Actinidia kolomikta can turn pink but they stay white in A. polygama. We hypothesized that the different leaf colors in the two Actinidia species may represent different photoprotection strategies. To test the hypothesis, leaf optical spectra, anatomy, chlorophyll a fluorescence, superoxide (O2 ˙- ) concentration, photosystem II photo-susceptibility, and expression of anthocyanin-related genes were investigated. On the adaxial side, light reflectance was the highest for white leaves of A. kolomikta, followed by its pink leaves and white leaves of A. polygama, and the absorptance for white leaves of A. kolomikta was the lowest. Chlorophyll and carotenoid content of white and pink leaves in A. kolomikta were significantly lower than those of A. polygama, while the relative anthocyanin content of pink leaves was the highest. Chloroplasts of palisade cells of white leaves in A. kolomikta were not well developed with a lower maximum quantum efficiency of PSII than the other types of leaves (pink leaves of A. kolomikta and white leaves of A. Polygama at the inner/outer canopy). After high light treatment from the abaxial surface, Fv /Fm decreased to a larger extent for white leaves of A. kolomikta than pink leaf and white leaves of A. polygama, and its non-photochemical quenching was also the lowest. White leaves of A. kolomikta showed higher O2 ˙- concentration compared to pink leaves under the same strong irradiance. The expression levels of anthocyanin biosynthetic genes in pink leaves were higher than in white leaves. These results indicate that white leaves of A. kolomikta apply a reflection strategy for photoprotection, while pink leaves resist photoinhibition via anthocyanin accumulation.


Assuntos
Actinidia , Actinidia/metabolismo , Clorofila A/análise , Antocianinas/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Luz
12.
Nutrients ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501097

RESUMO

During the thermal processing of dairy products, the Maillard reaction occurs between milk proteins and lactose, resulting in the formation of various products including glycated proteins. In this study, lactose-glycated casein was generated through the Maillard reaction between casein and lactose and then hydrolyzed by a trypsin preparation. The anti-inflammatory effect of the resultant glycated casein hydrolysate (GCH) was investigated using the lipopolysaccharide (LPS)-sitmulated rat intestinal epithelial (IEC-6) cells as a cell model and corresponding casein hydrolysate (CH) as a control. The results indicated that the preformed glycation enabled lactose conjugation to casein, which endowed GCH with a lactose content of 12.61 g/kg protein together with a lower activity than CH to enhance the viability value of the IEC-6 cells. The cells with LPS stimulation showed significant inflammatory responses, while a pre-treatment of the cells with GCH before LPS stimulation consistently led to a decreased secretion of three pro-inflammatory mediators, namely, IL-6, IL-1ß and tumor necrosis factor-α (TNF-α) but an increased secretion of two anti-inflammatory mediators, including IL-10 and transforming growth factor-ß (TGF-ß), demonstrating the anti-inflammatory potential of GCH in LPS-stimulated cells. In addition, GCH up-regulated the expression of TLR4, p-p38, and p-p65 proteins in the stimulated cells, resulting in the suppression of NF-κB and MAPK signaling pathways. Collectively, GCH was mostly less efficient than CH to exert these assessed anti-inflammatory activities in the cells and more importantly, GCH also showed an ability to cause cell inflammation by promoting IL-6 secretion and up-regulating the expression of TLR4 and p-p65. The casein lactose-glycation of the Maillard-type was thereby concluded to attenuate the anti-inflammatory potential of the resultant casein hydrolysate. It is highlighted that the casein lactose-glycation of the Maillard-type might cause a negative impact on the bioactivity of casein in the intestine, because the glycated casein after digestion could release GCH with reduced anti-inflammatory activity.


Assuntos
Caseínas , Lipopolissacarídeos , Ratos , Animais , Caseínas/farmacologia , Caseínas/metabolismo , Lactose/metabolismo , Reação de Maillard , Interleucina-6 , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico
13.
Front Nutr ; 9: 1042300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407553

RESUMO

Background: Heavy metal(loid)s are frequently detected in vegetables posing potential human health risks, especially for those grown around mining areas. However, the oral bioaccessibility and gingival cytotoxicity of heavy metals in wild vegetables remain unclear. Methods: In this study, we assessed the total and bioaccessible Cr, As, Cd, Pb, and Ni in four wild vegetables from mining areas in Southwest China. In addition, the cytotoxicity and underlying mechanisms of vegetable saliva extracts on human gingival epithelial cells (HGEC) were studied. Results: The Plantago asiatica L. (PAL) showed the highest bioaccessible Cr, As, Cd, and Pb, while the greatest bioaccessible Ni was in Taraxacum mongolicum (TMM). The Pteridium aquilinum (PAM), Chenopodium album L. (CAL), and TMM extracts decreased cell viability, induced apoptosis, caused DNA damage, and disrupted associated gene expressions. However, PAL extracts which have the highest bioaccessible heavy metals did not present adverse effects on HGEC, which may be due to its inhibition of apoptosis by upregulating p53 and Bcl-2. Conclusion: Our results indicated that polluted vegetable intake caused toxic effects on human gingiva. The heavy metals in vegetables were not positively related to human health risks. Collectively, both bioaccessibility and toxic data should be considered for accurate risk assessment.

14.
Nutrients ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235602

RESUMO

The non-starch yam polysaccharides (YP) are the bioactive substances of edible yam, while Se is an essential nutrient for the human body. Whether a covalent conjugation of Se to YP might cause bioactivity change for the resultant selenylated YP in the intestine is still insufficiently studied, including the critical intestinal barrier function. In this study, two selenylated YP products, namely, YPSe-I and YPSe-II, with corresponding Se contents of 795 and 1480 mg/kg, were obtained by the reaction of YP and Na2SeO3 in the presence of HNO3 and then assessed for their bioactivities to a cell model (i.e., rat intestinal epithelial IEC-6 cells). The results showed that YP, YPSe-I, and YPSe-II at 5-80 µg/mL dosages could promote cell growth with treatment times of 12-24 h. The three samples also could improve barrier integrity via increasing cell monolayer resistance and anti-bacterial activity against E. coli or by reducing paracellular permeability and bacterial translocation. Additionally, the three samples enhanced F-actin distribution and promoted the expression of the three tight junction proteins, namely, zonula occluden-1, occludin, and claudin-1. Meanwhile, the expression levels of ROCK and RhoA, two critical proteins in the ROCK/RhoA singling pathway, were down-regulated by these samples. Collectively, YPSe-I and, especially, YPSe-II were more potent than YP in enhancing the assessed bioactivities. It is thus concluded that this chemical selenylation of YP brought about enhanced activity in the cells to promote barrier integrity, while a higher selenylation extent of the selenylated YP induced much activity enhancement. Collectively, the results highlighted the important role of the non-metal nutrient Se in the modified polysaccharides.


Assuntos
Dioscorea , Actinas/metabolismo , Animais , Claudina-1/metabolismo , Dioscorea/química , Células Epiteliais/metabolismo , Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Ocludina/metabolismo , Polissacarídeos/metabolismo , Ratos , Junções Íntimas/metabolismo
15.
J Mater Chem B ; 10(28): 5454-5464, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786741

RESUMO

The SARS-CoV-2 pandemic has become a severe global public health event, and the development of protective and therapeutic strategies is urgently needed. Downregulation of angiotensin converting enzyme 2 (ACE2; one of the important SARS-CoV-2 entry receptors) and aberrant inflammatory responses (cytokine storm) are the main targets to inhibit and control COVID-19 invasion. Silver nanomaterials have well-known pharmaceutical properties, including antiviral, antibacterial, and anticancer properties. Here, based on a self-established metal evaporation-condensation-size graded collection system, smaller silver particles reaching the Ångstrom scale (AgÅPs) were fabricated and coated with fructose to obtain a stabilized AgÅP solution (F-AgÅPs). F-AgÅPs potently inactivated SARS-CoV-2 and prevented viral infection. Considering the application of anti-SARS-CoV-2, a sterilized F-AgÅP solution was produced via spray formulation. In our model, the F-AgÅP spray downregulated ACE2 expression and attenuated proinflammatory factors. Moreover, F-AgÅPs were found to be rapidly eliminated to avoid respiratory and systemic toxicity in this study as well as our previous studies. This work presents a safe and potent anti-SARS-CoV-2 agent using an F-AgÅP spray.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Humanos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Prata/farmacologia
16.
Prog Neurobiol ; 216: 102310, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35724808

RESUMO

The etiology of epilepsy remains undefined in two-thirds of patients. Here, we identified a de novo variant of ATP1A2 (c.2426 T > G, p.Leu809Arg), which encodes the α2 subunit of Na+/K+-ATPase, from a family with idiopathic epilepsy. This variant caused epilepsy with hemiplegic migraine in the study patients. We generated the point variant mouse model Atp1a2L809R, which recapitulated the epilepsy observed in the study patients. In Atp1a2L809R/WT mice, convulsions were observed and cognitive and memory function was impaired. This variant affected the potassium binding function of the protein, disabling its ion transport ability, thereby increasing the frequency of nerve impulses. Valproate (VPA) and Carbamazepine (CBZ) have limited therapeutic efficacy in ameliorating the epileptic syndromes of Atp1a2L809R/WT mice. Our work revealed that ATP1A2L809R variants cause a predisposition to epilepsy. Moreover, we provide a point variant mouse model for epilepsy research and drug screening.


Assuntos
Epilepsia , Enxaqueca com Aura , Animais , Modelos Animais de Doenças , Epilepsia/genética , Camundongos , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Mutação , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
17.
Dalton Trans ; 51(24): 9218-9222, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670316

RESUMO

A C,S bonded quasi-two-coordinate Cr(II) complex, Cr(SAr*)2 (HSAr* = HSC6H3-2,6(C6H2-2,4,6-Pri3)2), has been synthesized according to literature precedent. Magnetic measurements, high-frequency/field electron paramagnetic resonance (HF-EPR) experiments and ab initio calculation studies show that the field-induced slow magnetic relaxation behaviour is caused by relatively weak axial magnetic anisotropy.

18.
Front Plant Sci ; 13: 856732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646000

RESUMO

Considering that Actinidia kolomikta bears abundant white leaves on reproductive branches during blossoming, we hypothesized that the white leaves may maintain photosynthetic capacity by adjustments of leaf anatomy and physiological regulation. To test this hypothesis, leaf anatomy, gas exchange, chlorophyll a fluorescence, and the transcriptome were examined in white leaves of A. kolomikta during flowering. The palisade and spongy mesophyll in the white leaves were thicker than those in green ones. Chloroplast development in palisade parenchyma of white leaves was abnormal, whereas spongy parenchyma of white leaves contained functional chloroplasts. The highest photosynthetic rate of white leaves was ~82% of that of green leaves over the course of the day. In addition, the maximum quantum yield of PSII (F v/F m) of the palisade mesophyll in white leaves was significantly lower than those of green ones, whereas F v/F m and quantum yield for electron transport were significantly higher in the spongy mesophyll of white leaves. Photosynthetic capacity regulation of white leaf also was attributed to upregulation or downregulation of some key genes involving in photosynthesis. Particularly, upregulation of sucrose phosphate synthase (SPS), glyeraldehyde-3-phosphate dehydrogenase (GAPDH) and RuBisCO activase (RCA) in white leaf suggested that they might be involved in regulation of sugar synthesis and Rubisco activase in maintaining photosynthetic capacity of white leaf. Conclusions: white leaves contained a thicker mesophyll layer and higher photosynthetic activity in spongy parenchyma cells than those of palisade parenchyma cells. This may compensate for the lowered photosynthetic capacity of the palisade mesophyll. Consequently, white leaves maintain a relatively high photosynthetic capacity in the field.

19.
Biomed Res Int ; 2022: 2775434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528155

RESUMO

Objective: To explore the mechanism of Dahuang Fuzi decoction in the treatment of incomplete intestinal obstruction (IIO) based on network pharmacology and molecular docking. Methods: The chemical components of Rhubarb, Aconite, and Asarum were searched by the Traditional Chinese Medicine Systems Pharmacology database, where the possible active components were screened by oral bioavailability and drug likeness as filtering indicators. The relevant targets in the Swiss Target Prediction database were obtained according to the structure of the chemical components confirmed by the PubChem database. Disease targets of IIO were collected using GeneCards and OMIM databases. We obtained the cross-target using VENNY to capture the common targets. PPI analysis was performed on the intersection genes combined with Cytoscape 3.7.2. Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were carried out by David database. The core targets and active ingredients were molecularly docked through AutoDock Vina software to predict the detailed molecular mechanism of Dahuang Fuzi decoction for treating IIO. Results: There are 45 active components in Dahuang Fuzi decoction, with 709 corresponding targets, 538 IIO targets, and 97 common targets, among which kaempferol, deltoin, and eupatin are the main active ingredients. 10 core targets were obtained by protein-protein interaction network analysis. Through GO enrichment analysis, it was found that Dahuang Fuzi decoction may be involved in biological processes such as signal transduction, anti-apoptosis, promotion of gene expression, regulation of cell proliferation, and differentiation. Besides, KEGG pathway analysis revealed that it mainly relates to PI3K-AKT signal pathway and HIF-1 signal pathway, etc. Molecular docking results showed that the active ingredients of Dahuang Fuzi decoction possess a good binding activity with the core targets. Conclusion: Dahuang Fuzi decoction may act on target genes such as TNF, IL6, AKT1, VEGFA, SRC, EGFR, and STAT3 through active ingredients such as kaempferol, deltoin, and eupatin to regulate signaling pathways such as PI3K-AKT and HIF-1 and reduce the expression of various inflammatory factors such as TNF-α, IL-6, iNOS, and COX-2 to play a role in the treatment of IIO.


Assuntos
Medicamentos de Ervas Chinesas , Obstrução Intestinal , Diterpenos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides , Humanos , Quempferóis/farmacologia , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
20.
Adv Sci (Weinh) ; 9(17): e2105316, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35508803

RESUMO

Both Alzheimer's disease (AD) and osteoporosis (OP) are common age-associated degenerative diseases and are strongly correlated with clinical epidemiology. However, there is a lack of clear pathological relationship between the brain and bone in the current understanding. Here, it is found that young osteocyte, the most abundant cells in bone, secretes extracellular vesicles (OCYYoung -EVs) to ameliorate cognitive impairment and the pathogenesis of AD in APP/PS1 mice and model cells. These benefits of OCYYoung -EVs are diminished in aged osteocyte-derived EVs (OCYAged -EVs). Based on the self-constructed OCY-EVs tracer transgenic mouse models and the in vivo fluorescent imaging system, OCY-EVs have been observed to be transported to the brain under physiological and pathological conditions. In the hippocampal administration of Aß40 induced young AD model mice, the intramedullary injection of Rab27a-shRNA adenovirus inhibits OCYYoung -EVs secretion from bone and aggravates cognitive impairment. Proteomic quantitative analysis reveals that OCYYoung -EVs, compared to OCYAged -EVs, enrich multiple protective factors of AD pathway. The study uncovers the role of OCY-EV as a regulator of brain health, suggesting a novel mechanism in bone-brain communication.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Envelhecimento , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Osteócitos/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA