Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 275(Pt 1): 133522, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945325

RESUMO

A facile biphasic system composed of choline chloride (ChCl)-based deep eutectic solvent (DES) and methyl isobutyl ketone (MIBK) was developed to realize the furfural production, lignin separation and preparation of fermentable glucose from Eucalyptus in one-pot. Results showed that the ChCl/1,2-propanediol/MIBK system owned the best property to convert hemicelluloses into furfural. Under the optimal conditions (MRChCl:1,2-propanediol = 1:2, raw materials:DES:MIBK ratio = 1:4:8 g/g/mL, 0.075 mol/L AlCl3·6H2O, 140 °C, and 90 min), the furfural yield and glucose yield reached 65.0 and 92.2 %, respectively. Meanwhile, the lignin with low molecular weight (1250-1930 g/mol), low polydispersity (DM = 1.25-1.53) and high purity (only 0.08-2.59 % carbohydrate content) was regenerated from the biphasic system. With the increase of pretreatment temperature, the ß-O-4, ß-ß and ß-5 linkages in the regenerated lignin were gradually broken, and the content of phenolic hydroxyl groups increased, but the content of aliphatic hydroxyl groups decreased. This research provides a new strategy for the comprehensive utilization of lignocellulose in biorefinery process.

2.
Int J Biol Macromol ; 268(Pt 1): 131619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692998

RESUMO

The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: ß-O-4, ß-ß, and ß-5. Furthermore, the C-O bond (ß-O-4) signals of lignin decreased while the C-C bonds (ß-ß and ß-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.


Assuntos
Parede Celular , Celulose , Lignina , Pinus , Polissacarídeos , Lignina/química , Pinus/química , Parede Celular/química , Polissacarídeos/química , Celulose/química , Peso Molecular , Árvores/química , Espectroscopia de Ressonância Magnética/métodos , Madeira/química
3.
Research (Wash D C) ; 7: 0347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576863

RESUMO

Utilizing renewable lignocellulosic resources for wastewater remediation is crucial to achieving sustainable social development. However, the resulting by-products and the synthetic process characterized by complexity, high cost, and environmental pollution limit the further development of lignocellulose-based materials. Here, we developed a sustainable strategy that involved a new functional deep eutectic solvent (DES) to deconstruct industrial xylose residue into cellulose-rich residue with carboxyl groups, lignin with carboxyl and quaternary ammonium salt groups, and DES effluent rich in lignin fragments. Subsequently, these fractions equipped with customized functionality were used to produce efficient wastewater remediation materials in cost-effective and environmentally sound manners, namely, photocatalyst prepared by carboxyl-modified cellulose residue, biochar-based adsorbent originated from modified lignin, and flocculant synthesized by self-catalytic in situ copolymerization of residual DES effluent at room temperature. Under the no-waste principle, this strategy upgraded the whole components of waste lignocellulose into high-value-added wastewater remediation materials with excellent universality. These materials in coordination with each other can stepwise purify high-hazardous mineral processing wastewater into drinkable water, including the removal of 99.81% of suspended solids, almost all various heavy metal ions, and 97.09% chemical oxygen demand, respectively. This work provided promising solutions and blueprints for lignocellulosic resources to alleviate water shortages while also advancing the global goal of carbon neutrality.

4.
Int J Biol Macromol ; 264(Pt 2): 130702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471607

RESUMO

Pretreatment is a key process restricting the development of biorefinery. This work developed a pretreatment process based on an ethanolamine/acetamide alkaline deep eutectic solvent (ADES). Under microwave assistance, pure ADES pretreatment at 100 °C for 10 min achieved 95.9 % delignification and 95.2 % hemicellulose removal of bamboo shoot shells (BSS). Further, when 75 % water was added to pure DES to prepare hydrated DES (75 %-HADES), impressive delignification (93.2 %), hemicellulose removal (92.2 %) and cellulose recovery (94.8 %) were still achieved. The cellulose digestibility of the 75 %-HADES pretreated solid residue was significantly increased from 12.2 % (the control) to 91.2 %. Meanwhile, the structural features of hemicellulose and lignin macromolecules fractionated by 75 %-HADES pretreatment were well preserved, offering opportunities for downstream utilization. Overall, this work proposes an effective pretreatment strategy with the potential to enable the utilization of all major components of bamboo shoot shells.


Assuntos
Celulose , Solventes Eutéticos Profundos , Solventes/química , Biomassa , Hidrólise , Lignina/química
5.
Plant Cell ; 36(5): 1806-1828, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339982

RESUMO

Wood formation involves consecutive developmental steps, including cell division of vascular cambium, xylem cell expansion, secondary cell wall (SCW) deposition, and programmed cell death. In this study, we identified PagMYB31 as a coordinator regulating these processes in Populus alba × Populus glandulosa and built a PagMYB31-mediated transcriptional regulatory network. PagMYB31 mutation caused fewer layers of cambial cells, larger fusiform initials, ray initials, vessels, fiber and ray cells, and enhanced xylem cell SCW thickening, showing that PagMYB31 positively regulates cambial cell proliferation and negatively regulates xylem cell expansion and SCW biosynthesis. PagMYB31 repressed xylem cell expansion and SCW thickening through directly inhibiting wall-modifying enzyme genes and the transcription factor genes that activate the whole SCW biosynthetic program, respectively. In cambium, PagMYB31 could promote cambial activity through TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/PHLOEM INTERCALATED WITH XYLEM (PXY) signaling by directly regulating CLAVATA3/ESR-RELATED (CLE) genes, and it could also directly activate WUSCHEL HOMEOBOX RELATED4 (PagWOX4), forming a feedforward regulation. We also observed that PagMYB31 could either promote cell proliferation through the MYB31-MYB72-WOX4 module or inhibit cambial activity through the MYB31-MYB72-VASCULAR CAMBIUM-RELATED MADS2 (VCM2)/PIN-FORMED5 (PIN5) modules, suggesting its role in maintaining the homeostasis of vascular cambium. PagMYB31 could be a potential target to manipulate different developmental stages of wood formation.


Assuntos
Câmbio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Populus , Fatores de Transcrição , Xilema , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Xilema/metabolismo , Xilema/genética , Xilema/crescimento & desenvolvimento , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Câmbio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Parede Celular/metabolismo , Proliferação de Células , Madeira/crescimento & desenvolvimento , Madeira/metabolismo , Madeira/genética
8.
Int J Biol Macromol ; 253(Pt 4): 127029, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742903

RESUMO

Effective separation of lignin macromolecules from the xylose pre-hydrolysates (XPH) during the xylose production, thus optimizing the separation and purification process of xylose, is of great significance for reducing the production costs, achieving the high value-added utilization of lignin and increasing the industrial revenue. In this study, a simple and robust method (pH adjustment) for the separation of lignin from XPH was proposed and systematically compared with the conventional acid-promoted lignin precipitation method. The results showed that the lignin removal ratio (up to 60.34 %) of this simple method was higher than that of the conventional method, and the proposed method eliminated the necessity of heating and specialized equipment, which greatly reduced the separation cost. Meanwhile, this simple method does not destroy the components in XPH (especially xylose), ensuring the yield of the target product. On the other hand, the obtained lignin was nano-scale with less condensed structures, which also possessed small molecular weights with narrow distribution, excellent antioxidant activity (8-14 times higher than commercial antioxidants) and UV protection properties. In conclusion, the proposed simple separation method could effectively separate lignin from XPH at low cost, and the obtained lignin had potential commercial applications, which would further enhance the overall profitability of industrial production.


Assuntos
Lignina , Xilose , Lignina/química , Xilose/química , Hidrólise , Bebidas Alcoólicas
9.
Int J Biol Macromol ; 253(Pt 4): 127057, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37751817

RESUMO

Deep eutectic solvents (DESs) have emerged as promising and eco-friendly solvents for the efficient extraction of lignin from biomass due to their low cost and environmental benefits. Nevertheless, the prevalent use of acidic DESs in lignin extraction often results in excessive depolymerization and recondensation of lignin, thereby impeding its downstream applications. In this study, we developed a range of alkaline DESs (ADESs), both pure and peroxide-containing, for the extraction of high-quality lignin from bamboo. Moreover, carbon dioxide (CO2) was employed for the precipitation and regeneration of the extracted lignin. The obtained lignin fractions were comprehensively characterized in terms of yield, purity, morphology, solubility, structural features, and anti-UV/oxidant activity. The results showed that the monoethanolamine-based ADES demonstrated superior performance among the pure ADESs. Structural analysis confirmed the well-preserved substructures of lignin fractions obtained using ADESs, with ß-O-4 bond retention ranging from 49.8 % to 68.4 %. The incorporation of a suitable amount of peroxide improved lignin yield, morphology, solubility, and anti-UV/oxidant activity. Additionally, the anti-UV/oxidant activity of lignin exhibited a positive correlation with its phenolic hydroxyl content. This study provides a valuable reference for the green and sustainable production and valorization of lignin within the existing biorefinery framework.


Assuntos
Solventes Eutéticos Profundos , Lignina , Lignina/química , Solventes/química , Antioxidantes , Biomassa , Oxidantes , Hidrólise
10.
Bioresour Technol ; 387: 129679, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37579860

RESUMO

In this study, light-colored lignin was extracted from bamboo shoot shells (BSS) using a hydrated deep eutectic solvent (DES) pretreatment. The hydrated DES used in pretreatment consist of formic acid, benzyl triethylammonium chloride (BTEAC) and water. The pretreatment using a hydrated DES containing 30% water (H30) demonstrate efficient delignification (82.9%). Additionally, the hydrated DES protected the ß-O-4 linkage from excessive cleavage and recondensation as well as keep the light-colored of lignin. Moreover, the hydrated DES extracted lignin exhibits superior antioxidant performance and tyrosinase inhibitory capacity compared to the control. Notably, incorporating 5% lignin of H30-extracted lignin into a commercial suncream led to a remarkable enhancement of the SPF value, elevating from 14.8 to 32.6. In summary, the proposed hydrated DES pretreatment method offers significant benefits for extracting light-colored lignin, thereby promoting the multifunctional application of lignin in cosmetics.


Assuntos
Solventes Eutéticos Profundos , Lignina , Solventes , Biomassa , Água , Hidrólise
11.
Nat Commun ; 14(1): 4285, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463897

RESUMO

The conversion of lignocellulosic feedstocks to fermentable sugar for biofuel production is inefficient, and most strategies to enhance efficiency directly target lignin biosynthesis, with associated negative growth impacts. Here we demonstrate, for both laboratory- and field-grown plants, that expression of Pag-miR408 in poplar (Populus alba × P. glandulosa) significantly enhances saccharification, with no requirement for acid-pretreatment, while promoting plant growth. The overexpression plants show increased accessibility of cell walls to cellulase and scaffoldin cellulose-binding modules. Conversely, Pag-miR408 loss-of-function poplar shows decreased cell wall accessibility. Overexpression of Pag-miR408 targets three Pag-LACCASES, delays lignification, and modestly reduces lignin content, S/G ratio and degree of lignin polymerization. Meanwhile, the LACCASE loss of function mutants exhibit significantly increased growth and cell wall accessibility in xylem. Our study shows how Pag-miR408 regulates lignification and secondary growth, and suggest an effective approach towards enhancing biomass yield and saccharification efficiency in a major bioenergy crop.


Assuntos
MicroRNAs , Populus , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , Biomassa , Populus/metabolismo
12.
Bioresour Technol ; 385: 129415, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390929

RESUMO

In this work, a green and robust pretreatment which integrated acetic acid-catalyzed hydrothermal and wet mechanical pretreatment, was developed to efficiently produce high yield (up to 40.12%) of xylooligosaccharides and digestible substrates from Caffeoyl Shikimate Esterase down-regulated and control poplar wood. Subsequently, superhigh yield (more than 95%) of glucose and residual lignin were obtained after a moderate enzymatic hydrolysis. The residual lignin fraction exhibited a well-preserved ß-O-4 linkages (42.06/100Ar) and high S/G ratio (6.42). Subsequently, lignin-derived porous carbon was successfully synthesized, and it exhibited a high specific capacitance of 273.8 F g-1 at 1.0 A g-1 and long cycling stability (remained 98.5% after 10,000 cycles at 5.0 A g-1) compared to control poplar wood, demonstrating that special advantage of this genetically-modified poplar in this integrated process. This work developed an energy-saving and eco-friendly pretreatment technology as a waste-free route for converting different lignocellulosic biomass to multiple products.


Assuntos
Esterases , Lignina , Hidrólise , Madeira
13.
Sci Adv ; 9(21): eadg1258, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224258

RESUMO

Plant cell walls represent the most abundant pool of organic carbon in terrestrial ecosystems but are highly recalcitrant to utilization by microbes and herbivores owing to the physical and chemical barrier provided by lignin biopolymers. Termites are a paradigmatic example of an organism's having evolved the ability to substantially degrade lignified woody plants, yet atomic-scale characterization of lignin depolymerization by termites remains elusive. We report that the phylogenetically derived termite Nasutitermes sp. efficiently degrades lignin via substantial depletion of major interunit linkages and methoxyls by combining isotope-labeled feeding experiments and solution-state and solid-state nuclear magnetic resonance spectroscopy. Exploring the evolutionary origin of lignin depolymerization in termites, we reveal that the early-diverging woodroach Cryptocercus darwini has limited capability in degrading lignocellulose, leaving most polysaccharides intact. Conversely, the phylogenetically basal lineages of "lower" termites are able to disrupt the lignin-polysaccharide inter- and intramolecular bonding while leaving lignin largely intact. These findings advance knowledge on the elusive but efficient delignification in natural systems with implications for next-generation ligninolytic agents.


Assuntos
Ecossistema , Isópteros , Animais , Isópteros/genética , Lignina , Madeira , Carbono
14.
Carbohydr Polym ; 314: 120959, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173053

RESUMO

Cellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood. X-ray diffraction (XRD) and sum frequency generation spectroscopic (SFG) analyses showed that cellulose in transgenic trees was less crystalline, but the crystal size was larger. The nanocellulose fibrils prepared from transgenic wood had an increased size compared to those from wild type. When such fibrils were used as a reinforcing agent in sheet paper preparation, the mechanical strength of the paper was significantly enhanced. Engineering the GA pathway can therefore affect nanocellulose properties, providing a new strategy for expanding nanocellulose applications.


Assuntos
Arabidopsis , Populus , Giberelinas , Xilema/genética , Xilema/metabolismo , Oxigenases de Função Mista/metabolismo , Madeira/metabolismo , Celulose/química , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo
15.
Bioresour Technol ; 380: 129090, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105263

RESUMO

In this work, a rapid one-pot hydrated deep eutectic solvent (DES) pretreatment was proposed to facilitate the conversion of carbohydrates from lignocellulosic biomass to monosaccharides. Specifically, the pure and hydrated DES based on benzyl triethylammonium chloride (BTEAC), formic acid (FA) and water was used to pretreat bamboo shoot shells (BSS) by microwave heating. The pretreated solid residues were enzymatically saccharified to produce fermentable sugars, and the hydrolyzed carbohydrates and lignin remained in the hydrolyzate. The results showed that the yield of monosaccharides from the hydrated DES hydrolyzate (193.7-228.4 g/kg) was significantly higher than that (45.9-66.1 g/kg) of pure DES. The 30% hydrated DES pretreatment achieved the best glucose yield (89.03%) and a total monosaccharides yield of 555.4 g/kg, which corresponded to a conversion ratio of carbohydrates to monosaccharides of 87.0%. The proposed process is a robust method for the efficiently convert carbohydrates from BSS into monosaccharides.


Assuntos
Carboidratos , Solventes Eutéticos Profundos , Lignina/química , Glucose/química , Monossacarídeos , Hidrólise , Biomassa , Solventes/química
17.
Carbohydr Polym ; 296: 119938, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087987

RESUMO

Generally, the thermal conductivity (TC) of composite based on cellulose nanofibrils (CNF) is improved by adding thermal conductive filler, which inevitably leads to the loss of its mechanical properties. In this work, it is the first to simultaneously improve the toughness and TC of CNF/boron nitride nanosheets (BNNS) composite from the perspective of thermal conductive filler addition and CNF crystal change. The hydrophilic-modified BNNSs were successfully prepared by xylose-assisted ball-milling prior to adding into CNF. Compared with that of CNF film (1.34 W/(m·K)), the in-plane TC of CNF/BNNS composite (12.68 W/(m·K)) increased significantly by 846 % with loading 30 % BNNS. Afterwards, both toughness (8.0 MJ·m-3, increased ~250 %) and TC (14.7 W/(m·K), increased ~16 %) of CNF/BNNS composite were further enhanced significantly by mercerization with 12.5 % NaOH solution. The simultaneously improvement of toughness and TC is unprecedented in related studies, which contributes to the effective preparation of thermal management materials.


Assuntos
Compostos de Boro , Celulose , Celulose/química , Excipientes , Condutividade Térmica
18.
Nat Plants ; 8(5): 500-512, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534720

RESUMO

To date, little is known about the evolution of fern genomes, with only two small genomes published from the heterosporous Salviniales. Here we assembled the genome of Alsophila spinulosa, known as the flying spider-monkey tree fern, onto 69 pseudochromosomes. The remarkable preservation of synteny, despite resulting from an ancient whole-genome duplication over 100 million years ago, is unprecedented in plants and probably speaks to the uniqueness of tree ferns. Our detailed investigations into stem anatomy and lignin biosynthesis shed new light on the evolution of stem formation in tree ferns. We identified a phenolic compound, alsophilin, that is abundant in xylem, and we provided the molecular basis for its biosynthesis. Finally, analysis of demographic history revealed two genetic bottlenecks, resulting in rapid demographic declines of A. spinulosa. The A. spinulosa genome fills a crucial gap in the plant genomic landscape and helps elucidate many unique aspects of tree fern biology.


Assuntos
Atelinae , Gleiquênias , Aranhas , Animais , Atelinae/genética , Gleiquênias/genética , Genoma de Planta , Filogenia , Aranhas/genética
19.
Int J Biol Macromol ; 209(Pt B): 1882-1892, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489620

RESUMO

Elucidating the structural variations of lignin during the pretreatment is very important for lignin valorization. Herein, poplar wood was pretreated with an integrated process, which was composed of AlCl3-catalyzed hydrothermal pretreatment (HTP, 130-150 °C, 1.0 h) and mild deep-eutectic solvents (DES, 100 °C, 10 min) delignification for recycling lignin fractions. Confocal Raman Microscopy (CRM) was developed to visually monitor the delignification process during the HTP-DES pretreatment. NMR characterizations (2D-HSQC and 31P NMR) and elemental analysis demonstrated that the lignin fractions had undergone the following structural changes, such as dehydration, depolymerization, condensation. Molecular weights (GPC), microstructure (SEM and TEM), and antioxidant activity (DPPH analysis) of the lignins revealed that the DES delignification resulted in homogeneous lignin fragments (1.32 < PDI < 1.58) and facilitated the rapid assemblage of lignin nanoparticles (LNPs) with controllable nanoscale sizes (30-210 nm) and excellent antioxidant activity. These findings will enhance the understanding of structural transformations of the lignin during the integrated process and maximize the lignin valorization in a current biorefinery process.


Assuntos
Lignina , Populus , Antioxidantes/farmacologia , Biomassa , Solventes Eutéticos Profundos , Hidrólise , Lignina/química , Solventes/química
20.
Bioresour Technol ; 354: 127225, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35477102

RESUMO

Bamboo processing residue, which is rich in parenchyma cells, was treated as huge waste in bamboo processing industry, such as reassemble bamboo and bamboo flooring. Herein, autohydrolysis and rapid different deep eutectic solvents (DES) delignification strategy were consecutively performed to remove hemicelluloses and lignin from bamboo processing residue. The xylooligosaccharides (XOS) with high yield (34.35%) was achieved in the autohydrolysis process. Results showed that alkaline DES pretreatment resulted in the highest glucose yield (88.22%) and relatively high delignification rate (83.75%) as well as well-preserved lignin structures. However, the lignin fractions obtained under acidic DES conditions were tending to assemble into lignin nanoparticles (LNPs) and having excellent antioxidant activity as compared to those obtained from alkaline DES system. In brief, the combination of autohydrolysis and rapid DES delignification can achieve orientated fractionation of the components from the industrialized bamboo.


Assuntos
Solventes Eutéticos Profundos , Lignina , Biomassa , Fracionamento Químico , Hidrólise , Lignina/química , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA