Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 18(1): 62-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849446

RESUMO

Hematogenous metastasis limits the survival of colorectal cancer (CRC) patients. Here, we illuminated the roles of CD44 isoforms in this process. Isoforms 3 and 4 were predominantly expressed in CRC patients. CD44 isoform 4 indicated poor outcome and correlated with epithelial-mesenchymal transition (EMT) and decreased oxidative phosphorylation (OxPhos) in patients; opposite associations were found for isoform 3. Pan-CD44 knockdown (kd) independently impaired primary tumor formation and abrogated distant metastasis in CRC xenografts. The xenograft tumors mainly expressed the clinically relevant CD44 isoforms 3 and 4. Both isoforms were enhanced in the paranecrotic, hypoxic tumor regions but were generally absent in lung metastases. Upon CD44 kd, tumor angiogenesis was increased in the paranecrotic areas, accompanied by reduced hypoxia-inducible factor-1α and CEACAM5 but increased E-cadherin expression. Mitochondrial genes and proteins were induced upon pan-CD44 kd, as were OxPhos genes. Hypoxia increased VEGF release from tumor spheres, particularly upon CD44 kd. Genes affected upon CD44 kd in xenografts specifically overlapped concordantly with genes correlating with CD44 isoform 4 (but not isoform 3) in patients, validating the clinical relevance of the used model and highlighting the metastasis-promoting role of CD44 isoform 4.


Assuntos
Angiogênese , Neoplasias Colorretais , Humanos , Xenoenxertos , Linhagem Celular Tumoral , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hipóxia/genética , Regulação Neoplásica da Expressão Gênica
2.
Glycobiology ; 33(8): 637-650, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37486674

RESUMO

One critical step of metastasis formation is the extravasation of circulating tumor cells from the bloodstream. This process requires the dynamic interaction of cell adhesion molecules like E-selectin on endothelial cells with carbohydrate ligands on tumor cells. To characterize these glycans in a comprehensible approach, the rolling, tethering, and firm adhesion of nine human tumor cell lines on human umbilical vein endothelial cells was analyzed using laminar flow adhesion assays. The tumor cell lines were grouped into three subsets by their canonical E-selectin ligand status (sialyl-Lewis A and X +/+, -/+, -/-) and their adhesiveness was compared after enzymatic, pharmacologic, chemical treatment or antibody blockade of the tumor cells or endothelial cells, respectively. Tumor cells were also screened regarding their glycosyltransferase expression profile. We found that although E-selectin and terminal α2,3-sialic acid largely determined firm adhesion, adhesive events did not exclusively depend on the presence of sialyl-Lewis A and/or sialyl-Lewis X. Nevertheless, two of the three sialyl-Lewis A/X-/- tumor cells additionally or fully depended on vascular cell adhesion molecule-1 for firm adhesion. The significance of O-GalNAc- and N-glycans for adhesion varied remarkably among the tumor cells. The sialyl-Lewis A/X+/+ subset showed glycoprotein-independent adhesion, suggesting a role of glycolipids as well. All sialyl-Lewis A/X-/- tumor cells lacked FUT3 and FUT7 expression as opposed to sialyl-Lewis A/X+/+ or -/+ cell lines. In summary, the glycans on tumor cells mediating endothelial adhesion are not as much restricted to sialyl-Lewis A /X as previously assumed. The present study specifically suggests α2,3-linked sialic acid, O-GalNAc glycans, glycosphingolipids, and FUT3/FUT7 products as promising targets for future studies.


Assuntos
Selectina E , Células Endoteliais , Humanos , Selectina E/metabolismo , Células Endoteliais/metabolismo , Adesão Celular , Ácido N-Acetilneuramínico , Antígeno Sialil Lewis X , Polissacarídeos , Oligossacarídeos/química
3.
J Hematol Oncol ; 16(1): 23, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932441

RESUMO

BACKGROUND: The immunological composition of the tumor microenvironment has a decisive influence on the biological course of cancer and is therefore of profound clinical relevance. In this study, we analyzed the cooperative effects of integrin ß4 (ITGB4) on tumor cells and E-/P-selectin on endothelial cells within the tumor stroma for regulating tumor growth by shaping the local and systemic immune environment. METHODS: We used several preclinical mouse models for different solid human cancer types (xenograft and syngeneic) to explore the role of ITGB4 (shRNA-mediated knockdown in tumor cells) and E-/P-selectins (knockout in mice) for tumor growth; effects on apoptosis, proliferation and intratumoral signaling pathways were determined by histological and biochemical methods and 3D in vitro experiments; changes in the intratumoral and systemic immune cell composition were determined by flow cytometry and immunohistochemistry; chemokine levels and their attracting potential were measured by ELISA and 3D invasion assays. RESULTS: We observed a very robust synergism between ITGB4 and E-/P-selectin for the regulation of tumor growth, accompanied by an increased recruitment of CD11b+ Gr-1Hi cells with low granularity (i.e., myeloid-derived suppressor cells, MDSCs) specifically into ITGB4-depleted tumors. ITGB4-depleted tumors undergo apoptosis and actively attract MDSCs, well-known to promote tumor growth in several cancers, via increased secretion of different chemokines. MDSC trafficking into tumors crucially depends on E-/P-selectin expression. Analyses of clinical samples confirmed an inverse relationship between ITGB4 expression in tumors and number of tumor-infiltrating leukocytes. CONCLUSIONS: These findings suggest a distinct vulnerability of ITGB4Lo tumors for MDSC-directed immunotherapies.


Assuntos
Integrina beta4 , Células Supressoras Mieloides , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Quimiocinas , Células Endoteliais/metabolismo , Integrina beta4/metabolismo , Selectina-P , Microambiente Tumoral
4.
Mol Ther ; 30(4): 1536-1552, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35031433

RESUMO

Extravasation of circulating tumor cells (CTCs) is critical for metastasis and is initiated by adhesive interactions between glycoligands on CTCs and E-selectin on endothelia. Here, we show that the clinically approved proteasome inhibitor bortezomib (BZM; Velcade) counteracts the cytokine-dependent induction of E-selectin in the lung mediated by the primary tumor, thereby impairing endothelial adhesion and thus spontaneous lung metastasis in vivo. However, the efficacy of BZM crucially depends on the tumor cells' E-selectin ligands, which determine distinct adhesion patterns. The canonical ligands sialyl-Lewis A (sLeA) and sLeX mediate particularly high-affinity E-selectin binding so that the incomplete E-selectin-reducing effect of BZM is not sufficient to disrupt adhesion or metastasis. In contrast, tumor cells lacking sLeA/X nevertheless bind E-selectin, but with low affinity, so that adhesion and lung metastasis are significantly diminished. Such low-affinity E-selectin ligands apparently consist of sialylated MGAT5 products on CD44. BZM no longer has anti-metastatic activity after CD44 knockdown in sLeA/X-negative tumor cells or E-selectin knockout in mice. sLeA/X can be determined by immunohistochemistry in cancer samples, which might aid patient stratification. These data suggest that BZM might act as a drug for inhibiting extravasation and thus distant metastasis formation in malignancies expressing low-affinity E-selectin ligands.


Assuntos
Selectina E , Neoplasias Pulmonares , Animais , Bortezomib/farmacologia , Antígeno CA-19-9/farmacologia , Adesão Celular , Selectina E/genética , Selectina E/metabolismo , Humanos , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica , Oligossacarídeos , Antígeno Sialil Lewis X
5.
J Cancer Res Clin Oncol ; 148(6): 1525-1542, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34693476

RESUMO

PURPOSE: The transcription factor Fra-2 affects the invasive potential of breast cancer cells by dysregulating adhesion molecules in vitro. Previous results suggested that it upregulates the expression of E- and P-selectin ligands. Such selectin ligands are important members of the leukocyte adhesion cascade, which govern the adhesion and transmigration of cancer cells into the stroma of the host organ of metastasis. As so far, no in vivo data are available, this study was designed to elucidate the role of Fra-2 expression in a spontaneous breast cancer metastasis xenograft model. METHODS: The effect of Fra-2 overexpression in two stable Fra-2 overexpressing clones of the human breast cancer cell line MDA MB231 on survival and metastatic load was studied after subcutaneous injection into scid and E- and P-selectin-deficient scid mice. RESULTS: Fra-2 overexpression leads to a significantly shorter overall survival and a higher amount of spontaneous lung metastases not only in scid mice, but also in E- and P-deficient mice, indicating that it regulates not only selectin ligands, but also selectin-independent adhesion processes. CONCLUSION: Thus, Fra-2 expression influences the metastatic potential of breast cancer cells by changing the expression of adhesion molecules, resulting in increased adherence to endothelial cells in a breast cancer xenograft model.


Assuntos
Neoplasias da Mama , Moléculas de Adesão Celular , Antígeno 2 Relacionado a Fos/genética , Neoplasias Pulmonares , Animais , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Selectina E/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Ligantes , Neoplasias Pulmonares/secundário , Camundongos , Camundongos SCID , Metástase Neoplásica/patologia , Transplante de Neoplasias , Selectina-P/metabolismo
6.
Biochimie ; 192: 91-101, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34637894

RESUMO

In this study we analyzed expression of CD24 in a cohort of colorectal cancer patients using immunohistochemistry staining of CD24. We found a significant association between absence or low expression of CD24 (10% of membranous and 55% of cytoplasmic staining) and shortened patient survival. Protein localization played a crucial role in the prognosis: membranous form was the major and prognostic one in primary tumors, while cytoplasmic expression was elevated in liver metastases compared to the primary tumors and contained prognostic information. Then, using The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) RNA-seq data, we showed that CD24 mRNA level was two-fold decreased in primary colorectal cancers compared to adjacent normal mucosa. Like the protein staining data, ten percent of patients with the lowest mRNA expression levels of CD24 in primary tumors had reduced survival compared to the ones with higher expression. To explain these findings mechanistically, shRNA-mediated CD24 knockdown was performed in HT-29 colorectal cancer cells. It resulted in the increase of cell migration in vitro, no changes in proliferation and apoptosis, and a slight decrease in cell invasion. As increased cell migration is a hallmark of metastasis formation, this finding corroborates the association of a decreased CD24 expression with poor prognosis. Differential gene expression analysis revealed upregulation of genes involved in cell migration in the group of patients with low CD24 expression, including integrin subunit α3 and α3, ß3 subunits of laminin 332. Further co-expression analysis identified SPI1, STAT1 and IRF1 transcription factors as putative master-regulators in this group.


Assuntos
Antígeno CD24 , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias , Idoso , Antígeno CD24/biossíntese , Antígeno CD24/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Intervalo Livre de Doença , Feminino , Células HT29 , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Taxa de Sobrevida
7.
Front Genet ; 12: 662843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149804

RESUMO

Breast cancer (BC) is the leading cause of death from malignant neoplasms among women worldwide, and metastatic BC presents the biggest problems for treatment. Previously, it was shown that lower expression of ELOVL5 and IGFBP6 genes is associated with a higher risk of the formation of distant metastases in BC. In this work, we studied the change in phenotypical traits, as well as in the transcriptomic and proteomic profiles of BC cells as a result of the stable knockdown of ELOVL5 and IGFBP6 genes. The knockdown of ELOVL5 and IGFBP6 genes was found to lead to a strong increase in the expression of the matrix metalloproteinase (MMP) MMP1. These results were in good agreement with the correlation analysis of gene expression in tumor samples from patients and were additionally confirmed by zymography. The knockdown of ELOVL5 and IGFBP6 genes was also discovered to change the expression of a group of genes involved in the formation of intercellular contacts. In particular, the expression of the CDH11 gene was markedly reduced, which also complies with the correlation analysis. The spheroid formation assay showed that intercellular adhesion decreased as a result of the knockdown of the ELOVL5 and IGFBP6 genes. Thus, the obtained data indicate that malignant breast tumors with reduced expression of the ELOVL5 and IGFBP6 genes can metastasize with a higher probability due to a more efficient invasion of tumor cells.

8.
J Exp Clin Cancer Res ; 40(1): 214, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174926

RESUMO

BACKGROUND: Mesothelial E- and P-selectins substantially mediate the intraperitoneal spread of Pancreatic ductal adenocarcinoma (PDA) cells in xenograft models. In the absence of selectins in the host, the integrin subunit alpha-V (ITGAV, CD51) was upregulated in the remaining metastatic deposits. Here we present the first experimental study to investigate if ITGAV plays a functional role in PDA tumor growth and progression with a particular focus on intraperitoneal carcinomatosis. METHODS: Knockdown of ITGAV was generated using an RNA interference-mediated approach in two PDA cell lines. Tumor growth, intraperitoneal and distant metastasis were analyzed in a xenograft model. Cell lines were characterized in vitro. Gene expression of the xenograft tumors was analyzed. Patient samples were histologically classified and associations to survival were evaluated. RESULTS: The knockdown of ITGAV in PDA cells strongly reduces primary tumor growth, peritoneal carcinomatosis and spontaneous pulmonary metastasis. ITGAV activates latent TGF-ß and thereby drives epithelial-mesenchymal transition. Combined depletion of ITGAV on the tumor cells and E- and P-selectins in the tumor-host synergistically almost abolishes intraperitoneal spread. Accordingly, high expression of ITGAV in PDA cells was associated with reduced survival in patients. CONCLUSION: Combined depletion of ITGAV in PDA cells and E- and P-selectins in host mice massively suppresses intraperitoneal carcinomatosis of PDA cells xenografted into immunodeficient mice, confirming the hypothesis of a partly redundant adhesion cascade of metastasizing cancer cells. Our data strongly encourage developing novel therapeutic approaches for the combined targeting of E- and P-selectins and ITGAV in PDA.


Assuntos
Carcinoma Ductal Pancreático/patologia , Integrinas/genética , Integrinas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Transplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Análise de Sobrevida , Análise Serial de Tecidos , Regulação para Cima
9.
Eur J Cancer ; 137: 93-107, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32750503

RESUMO

BACKGROUND: Distant metastasis formation is the major clinical problem in prostate cancer (PCa) and the underlying mechanisms remain poorly understood. Our aim was to identify novel molecules that functionally contribute to human PCa systemic dissemination based on unbiased approaches. METHODS: We compared mRNA, microRNA (miR) and protein expression levels in established human PCa xenograft tumours with high (PC-3), moderate (VCaP) or weak (DU-145) spontaneous micrometastatic potential. By focussing on those mRNAs, miRs and proteins that were differentially regulated among the xenograft groups and known to interact with each other we constructed dissemination-related mRNA/miR and protein/miR networks. Next, we clinically and functionally validated our findings. RESULTS: Besides known determinants of PCa progression and/or metastasis, our interaction networks include several novel candidates. We observed a clear role of epithelial-to-mesenchymal transition (EMT) pathways for PCa dissemination, which was additionally confirmed by an independent human PCa model (ARCAP-E/-M). Two converging nodes, CD46 (decreasing with metastatic potential) and DDX21 (increasing with metastatic potential), were used to test the clinical relevance of the networks. Intriguingly, both network nodes consistently added prognostic information for patients with PCa whereas CD46 loss predicted poor outcome independent of established parameters. Accordingly, depletion of CD46 in weakly metastatic PCa cells induced EMT-like properties in vitro and spontaneous micrometastasis formation in vivo. CONCLUSIONS: The clinical and functional relevance of the dissemination-related interaction networks shown here could be successfully validated by proof-of-principle experiments. Therefore, we suggest a direct pro-metastatic, clinically relevant role for the multiple novel candidates included in this study; these should be further exploited by future studies.


Assuntos
Neoplasias da Próstata/genética , RNA Mensageiro/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Glycobiology ; 30(9): 695-709, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32103235

RESUMO

Endothelial E- and P-selectins promote metastasis formation by interacting with sialyl-Lewis X and A (sLeX/sLeA) on circulating tumor cells. This interaction precedes extravasation and can take place under dynamic and static conditions. Metastasis formation is often studied in xenograft models. However, it is unclear whether species differences exist in the ligand specificity of human (h) vs. murine (m) selectins and whether different ligands are functional under dynamic vs. static conditions. We systematically compared the h vs. m E- and P-selectin (ESel/PSel) binding of a range of human tumor cells under dynamic vs. static conditions. The tumor cells were categorized by their sLeA/X status (sLeA+/sLeX+, sLeA-/sLeX+ and sLeA-/sLeX-). The general biological nature of the tumor-selectin interaction was analyzed by applying several tumor cell treatments (anti-sLeA/X blockade, neuraminidase, pronase and inhibition of O/N-glycosylation). We observed remarkable differences in the static vs. dynamic interaction of tumor cells with h vs. m ESel/PSel depending on their sLeA/X status. The tumor cell treatments mostly affected either static or dynamic as well as either h- or m-selectin interaction. mESel showed a higher diversity of potential ligands than hESel. Inhibition of O-GalNAc-glycosylation also affected glycosphingolipid synthesis. Summarized, different ligands on human tumor cells are functional under static vs. dynamic conditions and for the interaction with human vs. murine ESel/PSel. Non-canonical selectin ligands lacking the sLeA/X glycan epitopes exist on human tumor cells. These findings have important implications for the current development of glycomimetic, antimetastatic drugs and encourage the development of immunodeficient mice with humanized selectins.


Assuntos
Selectina E/metabolismo , Selectina-P/metabolismo , Animais , Sítios de Ligação , Humanos , Camundongos , Células Tumorais Cultivadas
11.
Semin Cancer Biol ; 60: 191-201, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31408723

RESUMO

The development of a myeloid neoplasm is a step-wise process that originates from leukemic stem cells (LSC) and includes pre-leukemic stages, overt leukemia and a drug-resistant terminal phase. Organ-invasion may occur in any stage, but is usually associated with advanced disease and a poor prognosis. Sometimes, extra-medullary organ invasion shows a metastasis-like or even sarcoma-like destructive growth of neoplastic cells in local tissue sites. Examples are myeloid sarcoma, mast cell sarcoma and localized blast phase of chronic myeloid leukemia. So far, little is known about mechanisms underlying re-distribution and extramedullary dissemination of LSC in myeloid neoplasms. In this article, we discuss mechanisms through which LSC can mobilize out of the bone marrow niche, can transmigrate from the blood stream into extramedullary organs, can invade local tissue sites and can potentially create or support the formation of local stem cell niches. In addition, we discuss strategies to interfere with LSC expansion and organ invasion by targeted drug therapies.


Assuntos
Leucemia Mieloide/etiologia , Leucemia Mieloide/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral , Animais , Biomarcadores , Medula Óssea/patologia , Comunicação Celular , Movimento Celular , Humanos , Imunofenotipagem , Leucemia Mieloide/patologia , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/patologia , Fenótipo , Recidiva , Migração Transendotelial e Transepitelial/genética , Microambiente Tumoral/genética
12.
Cancers (Basel) ; 11(11)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717802

RESUMO

Leukemia-initiating cells reside within the bone marrow in specialized niches where they undergo complex interactions with their surrounding stromal cells. We have identified the actin-binding protein Plastin-3 (PLS3) as potential player within the leukemic bone marrow niche and investigated its functional role in acute myeloid leukemia. High expression of PLS3 was associated with a poor overall and event-free survival for AML patients. These findings were supported by functional in vitro and in vivo experiments. AML cells with a PLS3 knockdown showed significantly reduced colony numbers in vitro while the PLS3 overexpression variants resulted in significantly enhanced colony numbers compared to their respective controls. Furthermore, the survival of NSG mice transplanted with the PLS3 knockdown cells showed a significantly prolonged survival in comparison to mice transplanted with the control AML cells. Further studies should focus on the underlying leukemia-promoting mechanisms and investigate PLS3 as therapeutic target.

13.
Front Mol Biosci ; 6: 122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781574

RESUMO

Specificity of RNAi to selected target is challenged by off-target effects, both canonical and non-canonical. Notably, more than half of all human microRNAs are co-expressed with hosting them proteincoding genes. Here we dissect regulatory subnetwork centered on IGFBP6 gene, which is associated with low proliferative state and high migratory activity of basal-like breast cancer. We inhibited expression of IGFBP6 gene in a model cell line for basal-like breast carcinoma MDA-MB-231, then traced secondary and tertiary effects of this knockdown to LAMA4, a laminin encoding gene that contributes to the phenotype of triple-negative breast cancer. LAMA4-regulating miRNA miR-4274 and its host gene SORCS2 were highlighted as intermediate regulators of the expression levels of LAMA4, which correlated in a basal-like breast carcinoma sample subset of TCGA to the levels of SORCS2 negatively. Overall, our study points that the secondary and tertiary layers of regulatory interactions are certainly underappreciated. As these types of molecular event may significantly contribute to the formation of the cell phenotypes after RNA interference based knockdowns, further studies of multilayered molecular networks affected by RNAi are warranted.

14.
Anticancer Res ; 39(10): 5437-5448, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31570438

RESUMO

BACKGROUND/AIM: Epithelial-mesenchymal transition (EMT) is a key multi-step process which enables cancer cells to detach from the epithelial primary tumor mass and allows them to metastasize to distant organs. We immunohistochemically analyzed the expression of the transcription factors (TWIST-1, SLUG, ZEB1, ZEB2) and components of the extracellular matrix (laminin-5, fibronectin) which influence the EMT. MATERIALS AND METHODS: Primary human breast (MDA-MB-231), colon (HT29, HCT116), ovarian (SKOV3, OVCAR3) and head and neck squamous cell carcinoma cell lines (UTSCC2, UTSCC24A) grown as xenografts were immunohistochemically analyzed in vitro and in vivo. RESULTS: A high SLUG expression was observed in every cancer entity both in vitro and in vivo. ZEB1 and ZEB2 showed a high in vivo expression especially in SKOV3 and in in vitro grown MDA-MB-231 cells. CONCLUSION: SLUG expression showed the highest expression in all cancer entities investigated. Hence, it presumably represents the master regulator of EMT in these metastatic tumor entities.


Assuntos
Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Células HCT116 , Células HT29 , Humanos , Imuno-Histoquímica/métodos , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
15.
Sci Rep ; 8(1): 11893, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089785

RESUMO

We investigated the functional role of CEACAM1 in a spontaneous metastasis xenograft model of human melanoma in scid mice using BRAF wildtype MeWo cells with and without RNAi mediated knockdown of CEACAM1. Tumors from the xenograft model were subjected to whole genome expression analysis and metastasis was quantified histologically. Results and identified markers were verified using tissue samples of over 100 melanoma patients. Knockdown of CEACAM1 prolonged the animals' survival by significantly reducing subcutaneous growth of MeWo tumors and spontaneous lung metastasis. Microarray analysis revealed a strong influence of CEACAM1 knockdown on the network of EMT associated genes in the xenograft tumors (e.g. downregulation of BRAF, FOSL1, NRAS and TWIST). IGFBP7 and Latexin (highest up- and downregulated expression in microarray analysis) were found to be associated with longer and shorter survival, respectively, of melanoma patients. High FOSL1 and altered TWIST1 expression were found to be correlated with shortened survival in the cohort of melanoma patients. After a stepwise selection procedure combining above markers, multivariate analysis revealed IGFBP7, Latexin and altered TWIST to be prognostic markers for death. CEACAM1 could be a target for melanoma therapy as an alternative to (or in combination with) immune checkpoint and BRAF inhibitors.


Assuntos
Antígenos CD/genética , Moléculas de Adesão Celular/genética , Redes Reguladoras de Genes/genética , Melanoma/genética , Melanoma/patologia , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Metástase Neoplásica , Proteínas Proto-Oncogênicas B-raf/genética , Interferência de RNA/fisiologia , Regulação para Cima/genética
16.
Blood ; 132(18): 1936-1950, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30018080

RESUMO

The Hermes receptor CD44 is a multifunctional adhesion molecule that plays an essential role in the homing and invasion of neoplastic stem cells in various myeloid malignancies. Although mast cells (MCs) reportedly express CD44, little is known about the regulation and function of this receptor in neoplastic cells in systemic mastocytosis (SM). We found that clonal CD34+/CD38- stem cells, CD34+/CD38+ progenitor cells, and CD117++/CD34- MCs invariably express CD44 in patients with indolent SM (ISM), SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia (MCL). In addition, all human MCL-like cell lines examined (HMC-1, ROSA, and MCPV-1) displayed cytoplasmic and cell-surface CD44. We also found that expression of CD44 in neoplastic MCs depends on RAS-MEK and STAT5 signaling and increases with the aggressiveness of SM. Correspondingly, higher levels of soluble CD44 were measured in the sera of patients with advanced SM compared with ISM or cutaneous mastocytosis and were found to correlate with overall and progression-free survival. To investigate the functional role of CD44, a xenotransplantation model was employed using severe combined immunodeficient (SCID) mice, HMC-1.2 cells, and a short hairpin RNA (shRNA) against CD44. In this model, the shRNA-mediated knockdown of CD44 resulted in reduced MC expansion and tumor formation and prolonged survival in SCID mice compared with HMC-1.2 cells transduced with control shRNA. Together, our data show that CD44 is a RAS-MEK/STAT5-driven MC invasion receptor that correlates with the aggressiveness of SM. Whether CD44 can serve as therapeutic target in advanced SM remains to be determined in forthcoming studies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/genética , Mastocitose Sistêmica/genética , Invasividade Neoplásica/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Adulto , Idoso , Animais , Progressão da Doença , Feminino , Humanos , Receptores de Hialuronatos/análise , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Mastocitose Sistêmica/metabolismo , Mastocitose Sistêmica/patologia , Camundongos Endogâmicos BALB C , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia
17.
PLoS One ; 13(2): e0192525, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29432466

RESUMO

Finding additional functional targets for combination therapy could improve the outcome for melanoma patients. In a spontaneous metastasis xenograft model of human melanoma a shRNA mediated knockdown of L1CAM more than sevenfold reduced the number of lung metastases after the induction of subcutaneous tumors for two human melanoma cell lines (MeWo, MV3). Whole genome expression arrays of the initially L1CAM high MeWo subcutaneous tumors revealed unchanged or downregulated genes involved in epithelial to mesenchymal transition (EMT) except an upregulation of Jagged 1, indicating a compensatory change in Notch signaling especially as Jagged 1 expression showed an increase in MeWo L1CAM metastases and Jagged 1 was expressed in metastases of the initially L1CAM low MV3 cells as well. Expression of 17 genes showed concordant regulation for L1CAM knockdown tumors of both cell lines. The changes in gene expression indicated changes in the EMT network of the melanoma cells and an increase in p53/p21 and p38 activity contributing to the reduced metastatic potential of the L1CAM knockdowns. Taken together, these data make L1CAM a highly interesting therapeutic target to prevent further metastatic spread in melanoma patients.


Assuntos
Técnicas de Silenciamento de Genes , Melanoma/patologia , Metástase Neoplásica/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Neoplasias Pulmonares/secundário , Melanoma/genética , Melanoma/terapia , Camundongos , Interferência de RNA
18.
Prog Histochem Cytochem ; 51(3-4): 33-49, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27396686

RESUMO

MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.


Assuntos
Proteínas Argonautas/genética , Células Eucarióticas/metabolismo , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Complexo de Inativação Induzido por RNA/genética , Animais , Proteínas Argonautas/metabolismo , Comunicação Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Células Eucarióticas/citologia , Exossomos/metabolismo , Exossomos/ultraestrutura , Humanos , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/química , Complexo de Inativação Induzido por RNA/metabolismo , Transdução de Sinais , Transcrição Gênica
19.
Prog Histochem Cytochem ; 51(2): 25-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27267927
20.
Anticancer Res ; 36(4): 1507-18, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27069126

RESUMO

BACKGROUND: Non-small lung cancer is the leading cause of cancer-related mortality worldwide. For a deeper understanding of tumor biology, we established a pair of cell lines derived from a primary tumor and a corresponding lymph node metastasis. MATERIAL AND METHODS: The cell line BC4323 from the primary tumor (PT) and a mediastinal lymph node metastasis (LN) were derived from an adenocarcinoma (pT2, pN2, G3, UICC stage IIIa) in a 47-year-old female patient. Comparative characterization was performed by in vitro analysis. A murine xenograft was established for analysis of in vivo behavior. RESULTS: Chromosomal aberrations were detected in multiple chromosomal sections throughout the entire genome, with only a few differences between PT and LN cells. High-level Kirsten ras oncogene homolog (KRAS) mutation and amplification were seen based on a chromosomal translocation and novel assembled chromosome. In contrast to the genomic level, at the mRNA and protein levels, multiple differences were detectable, in particular in markers for cell adhesion [e.g. epithelial cell adhesion molecule (EpCAM), CD44, P-selectin binding, epidermal growth factor receptor (EGFR) and integrin alphaV] and the epithelial-mesenchymal transition. Due to accelerated tumor growth in vivo by the PT cells, a shortened overall survival was seen (60 vs. 101 days, p=0.005). CONCLUSION: We provide detailed analysis of a cell line derived from a primary tumor and a corresponding LN metastasis. This unique feature allows further investigative analysis of the differences and regulatory processes underlying the metastatic process during tumor progression in non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Neoplasias Pulmonares , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metástase Linfática/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA