Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731405

RESUMO

Chitin, a ubiquitous biopolymer, holds paramount scientific and economic significance. Historically, it has been primarily isolated from marine crustaceans. However, the surge in demand for chitin and the burgeoning interest in biopolymers have necessitated the exploration of alternative sources. Among these methods, the mulberry silkworm (Bombyx mori) has emerged as a particularly intriguing prospect. To isolate chitin from Bombyx mori, a chemical extraction methodology was employed. This process involved a series of meticulously orchestrated steps, including Folch extraction, demineralization, deproteinization, and decolorization. The resultant chitin was subjected to comprehensive analysis utilizing techniques such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 13C nuclear magnetic resonance (NMR) spectroscopy, and wide-angle X-ray scattering (WAXS). The obtained results allow us to conclude that the Bombyx mori represents an attractive alternative source of α-chitin.


Assuntos
Bombyx , Quitina , Bombyx/química , Animais , Quitina/química , Quitina/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Espectroscopia de Ressonância Magnética , Morus/química
2.
Chem Mater ; 35(19): 7878-7903, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37840775

RESUMO

Since the discovery of deep eutectic solvents (DESs) in 2003, significant progress has been made in the field, specifically advancing aspects of their preparation and physicochemical characterization. Their low-cost and unique tailored properties are reasons for their growing importance as a sustainable medium for the resource-efficient processing and synthesis of advanced materials. In this paper, the significance of these designer solvents and their beneficial features, in particular with respect to biomimetic materials chemistry, is discussed. Finally, this article explores the unrealized potential and advantageous aspects of DESs, focusing on the development of biomineralization-inspired hybrid materials. It is anticipated that this article can stimulate new concepts and advances providing a reference for breaking down the multidisciplinary borders in the field of bioinspired materials chemistry, especially at the nexus of computation and experiment, and to develop a rigorous materials-by-design paradigm.

3.
RSC Adv ; 13(32): 21971-21981, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37483675

RESUMO

Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine. There is an urgent need for the development of hybrids that will combine the unique bioactivity of ceramics with the performance of carbonaceous materials. Considering these requirements, herein, we propose a straightforward method of producing a 3D carbon-based scaffold that resembles the structural features of spongin, even on the nanometric level of their hierarchical organization. The modification of spongin with calcium phosphate was achieved in a deep eutectic solvent (choline chloride : urea, 1 : 2). The holistic characterization of the scaffolds confirms their remarkable structural features (i.e., porosity, connectivity), along with the biocompatibility of α-tricalcium phosphate (α-TCP), rendering them a promising candidate for stem cell-based tissue-engineering. Culturing human bone marrow mesenchymal stem cells (hMSC) on the surface of the biomimetic scaffold further verifies its growth-facilitating properties, promoting the differentiation of these cells in the osteogenesis direction. ALP activity was significantly higher in osteogenic medium compared to proliferation, indicating the differentiation of hMSC towards osteoblasts. However, no significant difference between C and C-αTCP in the same medium type was observed.

4.
Sci Rep ; 12(1): 22577, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585427

RESUMO

Herein, we demonstrate that modification of TiO2 nanotubes with graphene-strontium and cobalt molybdate perovskite can turn them into active electrocatalysts for hydrogen evolution reaction (HER). For this purpose, a simple method of hydrothermal synthesis of perovskites was developed directly on the TiO2 nanotubes substrate. Moreover, the obtained hybrids were also decorated with graphene oxide (GO) during one-step hydrothermal synthesis. The obtained materials were characterized by scanning electron microscopy with energy dispersive X-ray analysis, Raman spectroscopy, and X-ray diffraction analysis. Catalytic properties were verified by electrochemical methods (linear voltammetry, chronopotentiometry). The obtained hybrids were characterized by much better catalytic properties towards hydrogen evolution reaction compared to TiO2 and slightly worse than platinum. The optimized hybrid catalyst (decorated by GO) can drive a cathodic current density of 10 mA cm-2 at an overpotential of 121 mV for HER with a small Tafel slope of 90 mV dec-1 in 0.2 M H2SO4.

5.
Sci Rep ; 12(1): 8861, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614197

RESUMO

A novel chitin-ethylene glycol hybrid gel was prepared as a hydrogel electrolyte for electrical double-layer capacitors (EDLCs) using 1-butyl-3-methylimidazolium acetate [Bmim][Ac] as a chitin solvent. Examination of the morphology and topography of the chitin-EG membrane showed a homogeneous and smooth surface, while the thickness of the membrane obtained was 27 µm. The electrochemical performance of the chitin-EG hydrogel electrolyte was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. The specific capacitance value of the EDLC with chitin-EG hydrogel electrolyte was found to be 109 F g-1 in a potential range from 0 to 0.8 V. The tested hydrogel material was electrochemically stable and did not decompose even after 10,000 GCD cycles. Additionally, the EDLC test cell with chitin-EG hydrogel as electrolyte exhibited superior capacitance retention after 10,000 charge/discharge cycles compared with a commercial glass fiber membrane.

6.
Adv Sci (Weinh) ; 9(11): e2105059, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156333

RESUMO

Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F-actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin-rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi-scale form of biomineralization in metazoans is ptterned.


Assuntos
Actinas , Dióxido de Silício , Vidro , Dióxido de Silício/química , Esqueleto
7.
Biomimetics (Basel) ; 6(3)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34287234

RESUMO

Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of "forced biomineralization", which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33424135

RESUMO

The marine sponges of the order Verongiida (Demospongiae: Porifera) have survived on our planet for more than 500 million years due to the presence of a unique strategy of chemical protection by biosynthesis of more than 300 derivatives of biologically active bromotyrosines as secondary metabolites. These compounds are synthesized within spherulocytes, highly specialized cells located within chitinous skeletal fibers of these sponges from where they can be extruded in the sea water and form protective space against pathogenic viruses, bacteria and other predators. This chitin is an example of unique biomaterial as source of substances with antibiotic properties. Traditionally, the attention of researchers was exclusively drawn to lipophilic bromotyrosines, the extraction methods of which were based on the use of organic solvents only. Alternatively, we have used in this work a biomimetic water-based approach, because in natural conditions, sponges actively extrude bromotyrosines that are miscible with the watery environment. This allowed us to isolate 3,5-dibromoquinolacetic acid from an aqueous extract of the dried demosponge Aplysina aerophoba and compare its antimicrobial activity with the same compound obtained by the chemical synthesis. Both synthetic and natural compounds have shown antimicrobial properties against clinical strains of Staphylococcus aureus, Enterococcus faecalis and Propionibacterium acnes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00339-020-04167-0.

9.
Carbohydr Polym ; 252: 117204, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183639

RESUMO

Chitin is the second most abundant biopolymer and functions as the main structural component in a variety of living organisms. In nature, chitin rarely occurs in a pure form, but rather as nanoorganized chitin-proteins, chitin-pigments, or chitin-mineral composite biomaterials. Although chitin has a long history of scientific studies, it is still extensively investigated for practical applications in medicine, biotechnology, and biomimetics. The complexity of chitin has required the development of highly sensitive analytical methods for its identification. These methods are crucial for furthering disease diagnostics as well as advancing modern chitin-related technologies. Here we provide a summary of chitin identification by spectroscopic (NEXAFS, FTIR, Raman, NMR, colorimetry), chromatographic (TLC, GC, HPLC), electrophoretic (HPCE), and diffraction methods (XRD, WAXS, SAXS, HRTEM-SAED). Biochemical and immunochemical (ELISA, immunostaining) methods are described with respect to their medical application. This review outlines the history as well as the current progress in the analytical methods for chitin identification.


Assuntos
Quitina , Cromatografia/métodos , Eletroforese/métodos , Imunoensaio/métodos , Análise Espectral/métodos , Animais , Quitina/química , Quitina/ultraestrutura
10.
ACS Biomater Sci Eng ; 6(10): 5357-5367, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320547

RESUMO

The giant bones of whales (Cetacea) are the largest extant biomineral-based constructs known. The fact that such mammalian bones can grow up to 7 m long raises questions about differences and similarities to other smaller bones. Size and exposure to environmental stress are good reasons to suppose that an unexplored level of hierarchical organization may be present that is not needed in smaller bones. The existence of such a macroscopic naturally grown structure with poorly described mechanisms for biomineralization is an example of the many yet unexplored phenomena in living organisms. In this article, we describe key observations in macrobiomineralization and suggest that the large scale of biomineralization taking place in selected whale bones implies they may teach us fundamental principles of the chemistry, biology, and biomaterials science governing bone formation, from atomistic to the macrolevel. They are also associated with a very lipid rich environment on those bones. This has implications for bone development and damage sensing that has not yet been fully addressed. We propose that whale bone construction poses extreme requirements for inorganic material storage, mediated by biomacromolecules. Unlike extinct large mammals, cetaceans still live deep in large terrestrial water bodies following eons of adaptation. The nanocomposites from which the bones are made, comprising biomacromolecules and apatite nanocrystals, must therefore be well adapted to create the macroporous hierarchically structured architectures of the bones, with mechanical properties that match the loads imposed in vivo. This massive skeleton directly contributes to the survival of these largest mammals in the aquatic environments of Earth, with structural refinements being the result of 60 million years of evolution. We also believe that the concepts presented in this article highlight the beneficial uses of multidisciplinary and multiscale approaches to study the structural peculiarities of both organic and inorganic phases as well as mechanisms of biomineralization in highly specialized and evolutionarily conserved hard tissues.


Assuntos
Ciência dos Materiais , Baleias , Animais , Materiais Biocompatíveis , Osso e Ossos , Osteogênese
11.
Int J Biol Macromol ; 162: 1187-1194, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615216

RESUMO

Studies on the identification, properties and function of chitin in sponges (Porifera), which are recognized as the first multicellular organisms on Earth, continue to be of fundamental scientific interest. The occurrence of chitin has so far been reported in 21 marine sponge species and only in two inhabiting fresh water. In this study, we present the discovery of α-chitin in the endemic demosponge Ochridaspongia rotunda, found in Lake Ohrid, which dates from the Tertiary. The presence of chitin in this species was confirmed using special staining, a chitinase test, FTIR, Raman and NEXAFS spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). In contrast to the case of marine sponges, chitin in O. rotunda has been found only within its holdfast, suggesting a role of chitin in the attachment of the sponge to the hard substratum. Isolated fibrous matter strongly resemble the shape and size of the sponge holdfast with membrane-like structure.


Assuntos
Quitina/química , Quitina/metabolismo , Poríferos/química , Poríferos/metabolismo , Animais
12.
Mar Drugs ; 18(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498448

RESUMO

The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of α-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals.


Assuntos
Antozoários/anatomia & histologia , Antozoários/química , Quitina/isolamento & purificação , Animais , Quitina/química , Eletroquímica
13.
Mater Sci Eng C Mater Biol Appl ; 109: 110566, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228987

RESUMO

Marine demosponges of the Verongiida order are considered a gold-mine for bioinspired materials science and marine pharmacology. The aim of this work was to simultaneously isolate selected bromotyrosines and unique chitinous structures from A. aerophoba and to propose these molecules and biomaterials for possible application as antibacterial and antitumor compounds and as ready-to-use scaffolds for cultivation of cardiomyocytes, respectively. Among the extracted bromotyrosines, the attention has been focused on aeroplysinin-1 that showed interesting unexpected growth inhibition properties for some Gram-negative clinical multi-resistant bacterial strains, such as A. baumannii and K. pneumoniae, and on aeroplysinin-1 and on isofistularin-3 for their anti-tumorigenic activity. For both compounds, the effects are cell line dependent, with significant growth inhibition activity on the neuroblastoma cell line SH-SY5Y by aeroplysinin-1 and on breast cancer cell line MCF-7 by isofistularin-3. In this study, we also compared the cultivation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) on the A. aerophoba chitinous scaffolds, in comparison to chitin structures that were pre-coated with Geltrex™, an extracellular matrix mimetic which is used to enhance iPSC-CM adhesion. The iPSC-CMs on uncoated and pure chitin structures started contracting 24 h after seeding, with comparable behaviour observed on Geltrex-coated cell culture plates, confirming the biocompatibility of the sponge biomaterial with this cell type. The advantage of A. aerophoba is that this source organism does not need to be collected in large quantities to supply the necessary amount for further pre-clinical studies before chemical synthesis of the active compounds will be available. A preliminary analysis of marine sponge bioeconomy as a perspective direction for application of biomaterials and secondary bioactive metabolites has been finally performed for the first time.


Assuntos
Acetonitrilas , Alcaloides , Organismos Aquáticos/química , Materiais Biomiméticos , Cicloexenos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Poríferos/química , Acetonitrilas/química , Acetonitrilas/farmacocinética , Acetonitrilas/farmacologia , Alcaloides/química , Alcaloides/farmacocinética , Alcaloides/farmacologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Cicloexenos/química , Cicloexenos/farmacocinética , Cicloexenos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células MCF-7 , Miócitos Cardíacos/citologia
14.
J Environ Manage ; 261: 110218, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148288

RESUMO

Diverse fields of modern environmental technology are nowadays focused on the discovery and development of new sources for oil spill removal. An especially interesting type of sorbents is those of natural origin-biosorbents-as ready-to-use constructs with biodegradable, nontoxic, renewable and cost-efficient properties. Moreover, the growing problem of microplastic-related contamination in the oceans further encourages the use of biosorbents. Here, for the first time, naturally pre-designed molting cuticles of the Theraphosidae spider Avicularia sp. "Peru purple", as part of constituting a large-scale spider origin waste material, were used for efficient sorption of crude oil. Compared with currently used materials, the proposed biosorbent of spider cuticular origin demonstrates excellent ability to remain on the water surface for a long time. In this study the morphology and hydrophobic features of Theraphosidae cuticle are investigated for the first time. The unique surface morphology and very low surface free energy (4.47 ± 0.08 mN/m) give the cuticle-based, tube-like, porous biosorbent excellent oleophilic-hydrophobic properties. The crude oil sorption capacities of A. sp. "Peru purple" molt structures in sea water, distilled water and fresh water were measured at 12.6 g/g, 15.8 g/g and 16.6 g/g respectively. These results indicate that this biomaterial is more efficient than such currently used fibrous sorbents as human hairs or chicken feathers. Four cycles of desorption were performed and confirmed the reusability of the proposed biosorbent. We suggest that the oil adsorption mechanism is related to the brush-like and microporous structure of the tubular spider molting cuticles and may also involve interaction between the cuticular wax layers and crude oil.


Assuntos
Poluição por Petróleo , Petróleo , Aranhas , Poluentes Químicos da Água , Adsorção , Animais , Muda , Peru , Plásticos
15.
Materials (Basel) ; 13(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102375

RESUMO

This work determines the effect of the addition of various amounts of vanadium oxide on the work of a cell built from a hybrid VxOy-TiO2-rGO system in a lithium-ion cell. Moreover, a new method based on solvothermal chemistry is proposed for the creation of a new type of composite material combining reduced graphene, vanadium oxide and crystalline anatase. The satisfactory electrochemical properties of VxOy-TiO2-rGO hybrids can be attributed to the perfect matching of the morphology and structure of VxOy-TiO2 and rGO. In addition, it is also responsible for the partial transfer of electrons from rGO to VxOy-TiO2, which increases the synergistic interaction of the VxOy-TiO2-rGO hybrid to the reversible storage of lithium. In addition a full cell was created LiFePO4/VxOy-TiO2-rGO. The cell showed good cyclability while providing a capacity of 120 mAh g-1.

16.
Mar Drugs ; 18(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092907

RESUMO

Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.


Assuntos
Quitina/análogos & derivados , Quitina/química , Hemolinfa/metabolismo , Poríferos/metabolismo , Caramujos/metabolismo , Alicerces Teciduais , Animais , Biomineralização , Carbonato de Cálcio/química , Difração de Raios X
17.
Nanomaterials (Basel) ; 10(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069874

RESUMO

One of the major challenges of implantology is to design nanoscale modifications of titanium implant surfaces inducing osseointegration. The aim of this study was to investigate the behavior of rat osteoblasts cultured on anodized TiO2 nanotubes of different crystallinity (amorphous and anatase phase) up to 24 days. TiO2 nanotubes were fabricated on VT1-0 titanium foil via a two-step anodization at 20 V using NH4F as an electrolyte. Anatase-phase samples were prepared by heat treatment at 500 °C for 1 h. VT1-0 samples with flat surfaces were used as controls. Primary rat osteoblasts were seeded over experimental surfaces for several incubation times. Scanning electron microscopy (SEM) was used to analyze tested surfaces and cell morphology. Cell adhesion and proliferation were investigated by cell counting. Osteogenic differentiation of cells was evaluated by qPCR of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), integrin binding sialoprotein (IBSP), alkaline phosphatase (ALP) and osteocalcin (OCN). Cell adhesion and proliferation, cell morphology and the expression of osteogenic markers were affected by TiO2 nanotube layered substrates of amorphous and anatase crystallinity. In comparison with flat titanium, along with increased cell adhesion and cell growth a large portion of osteoblasts grown on the both nanostructured surfaces exhibited an osteocyte-like morphology as early as 48 h of culture. Moreover, the expression of all tested osteogenic markers in cells cultured on amorphous and anatase TiO2 nanotubes was upregulated at least at one of the analyzed time points. To summarize, we demonstrated that amorphous and anodized TiO2 layered substrates are highly biocompatible with rat osteoblasts and that the surface modification with about 1500 nm length nanotubes of 35 ± 4 (amorphous phase) and 41 ± 8 nm (anatase phase) in diameter is sufficient to induce their osteogenic differentiation. Such results are significant to the engineering of coating strategies for orthopedic implants aimed to establish a more efficient bone to implant contact and enhance bone repair.

18.
Sci Adv ; 5(10): eaax2805, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620556

RESUMO

Fabrication of biomimetic materials and scaffolds is usually a micro- or even nanoscale process; however, most testing and all manufacturing require larger-scale synthesis of nanoscale features. Here, we propose the utilization of naturally prefabricated three-dimensional (3D) spongin scaffolds that preserve molecular detail across centimeter-scale samples. The fine-scale structure of this collagenous resource is stable at temperatures of up to 1200°C and can produce up to 4 × 10-cm-large 3D microfibrous and nanoporous turbostratic graphite. Our findings highlight the fact that this turbostratic graphite is exceptional at preserving the nanostructural features typical for triple-helix collagen. The resulting carbon sponge resembles the shape and unique microarchitecture of the original spongin scaffold. Copper electroplating of the obtained composite leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol in both freshwater and marine environments.


Assuntos
Biomimética , Colágeno/química , Carbono/química , Catálise , Colágeno/ultraestrutura , Cobre/química , Análise Espectral , Alicerces Teciduais/química
19.
Molecules ; 24(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623238

RESUMO

Chitin, as a fundamental polysaccharide in invertebrate skeletons, continues to be actively investigated, especially with respect to new sources and the development of effective methods for its extraction. Recent attention has been focused on marine crustaceans and sponges; however, the potential of spiders (order Araneae) as an alternative source of tubular chitin has been overlooked. In this work, we focused our attention on chitin from up to 12 cm-large Theraphosidae spiders, popularly known as tarantulas or bird-eating spiders. These organisms "lose" large quantities of cuticles during their molting cycle. Here, we present for the first time a highly effective method for the isolation of chitin from Caribena versicolor spider molt cuticle, as well as its identification and characterization using modern analytical methods. We suggest that the tube-like molt cuticle of this spider can serve as a naturally prefabricated and renewable source of tubular chitin with high potential for application in technology and biomedicine.


Assuntos
Quitina/química , Quitina/isolamento & purificação , Aranhas/química , Animais , Fracionamento Químico , Micro-Ondas , Muda , Análise Espectral
20.
Mar Drugs ; 17(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658704

RESUMO

Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring ("ready-to-use") chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay.


Assuntos
Organismos Aquáticos/química , Quitina/química , Portadores de Fármacos/química , Poríferos/química , Tirosina/análogos & derivados , Animais , Antibacterianos/administração & dosagem , Quitina/isolamento & purificação , Citoesqueleto/química , Compostos de Decametônio/administração & dosagem , Portadores de Fármacos/isolamento & purificação , Hidrocarbonetos Bromados/química , Hidrocarbonetos Bromados/isolamento & purificação , Isoxazóis/química , Isoxazóis/isolamento & purificação , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Poríferos/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Tirosina/química , Tirosina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA