RESUMO
A ligand-accessible space in the CYP2C8 active site was reconstituted as a fused grid-based Template∗ with the use of structural data of the ligands. An evaluation system of CYP2C8-mediated metabolism has been developed on Template with the introduction of the idea of Trigger-residue initiated ligand-movement and fastening. Reciprocal comparison of the data of simulation on Template with experimental results suggested a unified way of the interaction of CYP2C8 and its ligands through the simultaneous plural-contact with Rear-wall of Template. CYP2C8 was expected to have a room for ligands between vertically standing parallel walls termed Facial-wall and Rear-wall. Both the walls were separated by a distance corresponding to 1.5-Ring (grid) diameter size, which was termed Width-gauge. The ligand sittings were stabilized through contacts with Facial-wall and the left-side borders of Template including specific Position 29, left-side border of Rings I/J, or Left-end, after Trigger-residue initiated ligand-movement. Trigger-residue movement is suggested to force ligands to stay firmly in the active site and then to initiate CYP2C8 reactions. Simulation experiments for over 350 reactions of CYP2C8 ligands supported the system established.
Assuntos
Citocromo P-450 CYP2C8 , Ligantes , Domínio CatalíticoRESUMO
[This corrects the article DOI: 10.14252/foodsafetyfscj.D-21-00006.].
RESUMO
Detailed estimation of cytochrome P450 (CYP)-mediated metabolisms of medicine and other chemicals is necessary for the efficacy and safety assessments. Data on the metabolisms mediated by minor CYP enzymes like CYP2C18 are often not available in metabolisms and safety assessments of chemicals except for medical drugs developed recently. A ligand-accessible space in the active site of human CYP2C18 was thus reconstituted as a fused grid-based Template with the use of structural data of its ligands. An evaluation system of CYP2C18-mediated metabolism was then developed on Template with the introduction of the idea of movement and fastening of ligands after Trigger-residue contact. Reciprocal comparison of the data of simulations on Template with experimental results suggested a unified way of the interaction of CYP2C18, in similar to the CYP2C8 interaction (Drug Metab Pharmacokinet 2023, in press). These experiments also displayed the roles of initial Trigger-residue-localizations on their distinct catalyses among human CYP2C enzymes. Simulation experiments for over 130 reactions of CYP2C18 ligands supported the system established.
Assuntos
Sistema Enzimático do Citocromo P-450 , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Domínio Catalítico , Taxa de Depuração Metabólica , Especificidade por SubstratoRESUMO
Understanding of metabolic processes is a key factor to evaluate biological effects of carcinogen and mutagens. Applicability of fused-grid Template* systems of CYP enzymes (Drug Metab Pharmacokinet 2019, 2020, 2021, and 2022) was tested for three phenomena. (1) Possible causal relationships between CYP-mediated metabolisms of ß-naphthoflavone and 3-methylcholanthrene and the high inducibility of CYP enzymes were examined. Selective involvement of non-constitutive CYP1A1, but not constitutive CYP1A2, was suggested on the oxidative metabolisms of efficient inducers, ß-naphthoflavone and 3-methylcholanthrene. These results supported the view of the causal link of their high inducibility with their inefficient metabolisms due to the lack of CYP1A1 in livers at early periods after the administration of both inducers. (2) Clear differences exist between human and rodent CYP1A1 enzymes on their catalyses with heterocyclic amines, dioxins and polyaromatic hydrocarbons (PAHs). Reciprocal comparison of simulation results with experimental data suggested the rodent specific site and distinct sitting-preferences of ligands on Template for human and rodent CYP1A1 enzymes. (3) Enhancement of metabolic activation and co-mutagenicity have been known as phenomena associated with Salmonella mutagenesis assay. Both the phenomena were examined on CYP-Templates in ways of simultaneous bi-molecule bindings of distinct ligands as trigger and pro-metabolized molecules. α-Naphthoflavone and norharman served consistently as trigger-molecules to support the oxidations of PAHs and arylamines sitting simultaneously as pro-metabolized molecules on Templates of CYP1A1, CYP1A2 and CYP3A4. These CYP-Template simulation systems with deciphering capabilities are promising tools to understand the mechanism basis of metabolic activations and to support confident judgements in safety assessments.
RESUMO
A ligand-accessible space in the CYP2C19 active site was reconstituted as a fused grid-based Template with the use of structural data of the ligands. An evaluation system of CYP2C19-mediated metabolism has been developed on Template with the introduction of the idea of Trigger-residue initiated ligand-movement and fastening. Reciprocal comparison of the data of simulation on Template with experimental results suggested a unified way of the interaction of CYP2C19 and its ligands through the simultaneous plural-contact with Rear-wall of Template. CYP2C19 was expected to have a room for ligands between vertically standing parallel walls termed Facial-wall and Rear-wall, which were separated by a distance corresponding to 1.5-Ring (grid) diameter size. The ligand sittings were stabilized through contacts with Facial-wall and the left-side borders of Template including specific Position 29 or Left-end after Trigger-residue initiated ligand-movement. Trigger-residue movement is suggested to force ligands to stay firmly in the active site and then to initiate CYP2C19 reactions. Simulation experiments for over 450 reactions of CYP2C19 ligands supported the system established.
Assuntos
Ligantes , Citocromo P-450 CYP2C19 , Domínio Catalítico , Simulação por ComputadorRESUMO
Hepatotoxicity associated with food-derived coumarin occurs occasionally in humans. We have, herein, assessed the data of existing clinical and nonclinical studies as well as those of in silico models for humans in order to shed more light on this association. The average intakes of food-derived coumarin are estimated to be 1-3 mg/day, while a ten-times higher level is expected in the worst-case scenarios. These levels are close to or above the tolerable daily intake suggested by a chronic study in dogs. The human internal exposure levels were estimated by a physiologically-based pharmacokinetic model with the use of virtual doses of coumarin in the amounts expected to derive from foods. Our results suggest that: (i) coumarin can be cleared rapidly via 7-hydroxylation in humans, and (ii) the plasma levels of coumarin and of its metabolite, o-hydroxyphenylacetic acid associated with hepatotoxicity, are considerably lower than those yielding hepatotoxicity in rats. Pharmacokinetic data suggest a low or negligible concern regarding a coumarin-induced hepatotoxicity in humans exposed to an average intake from foods. Detoxification of coumarin through the 7-hydroxylation, however, might vary among individuals due to genetic polymorphisms in CYP2A6 enzyme. In addition, the CYP1A2- and CYP2E1-mediated activation of coumarin can fluctuate as a result of induction caused by environmental factors. Furthermore, the daily consumption of food-contained coumarin was implicated in the potential risk of hepatotoxicity by the drug-induced liver injury score model developed by the US Food and Drug Administration. These results support the idea of the existence of human subpopulations that are highly sensitive to coumarin; therefore, a more precise risk assessment is needed. The present study also highlights the usefulness of in silico approaches of pharmacokinetics with the liver injury score model as battery components of a risk assessment.
RESUMO
A ligand-accessible space in the CYP2C9 active site was reconstituted as a fused grid-based Template with the use of structural data of the ligands. CYP2C9 Template generated has been developed as an evaluation system of CYP2C9 metabolism with the introduction of the idea of Trigger-residue initiated ligand-movement and fastening. Reciprocal comparison of the data of simulation on Template with experimental results suggested a unified way of the interaction of CYP2C9 and its ligands through the simultaneous plural-contact with Rear-wall of Template. CYP2C9 was expected to have a room for ligands between vertically standing parallel walls termed Facial-wall and Rear-wall. Both the walls were separated by a distance corresponding to 1.5-Ring (grid) diameter size, which was termed as Width-gauge. The results indicate that ligand sittings are stabilized through contacts with Facial-wall and the left-side border of Template including specific Position 29 or Left-end after Trigger-residue movement. In addition, Trigger-residue movement is suggested to force ligands to stay firmly in the active site and then initiate CYP2C9 reactions. Simulation experiments for over 500 reactions of CYP2C9 ligands supported the system established. Possible modes of enhanced catalyzes in bi-molecule bindings are also discussed.
Assuntos
Ligantes , Domínio Catalítico , Citocromo P-450 CYP2C9/genéticaRESUMO
Cytochrome P450 (CYP)-mediated metabolisms of four chemicals have been investigated to understand their unresolved phenomena of their metabolisms using human CYP-Template systems developed in our previous studies (Drug Metab Pharmacokinet 2019, 2021, 2022). Simulation experiments of a topoisomerase-targeting agent, amonafide, offered a possible new inhibitory-mechanism as Trigger-residue inactivation on human CYP1A2 Template. N-Acetylamonafide as well as amonafide would inactivate CYP1A2 through the interference of Trigger-residue movement with their dimethylaminoethyl parts. The mechanism was also supported on the inhibition/inactivation of two other drugs, DSP-1053 and binimetinib. Both the drugs, after other CYP-mediated slight structural alterations, were expected to interact with Trigger-residue for the intense inhibition on CYP1A2 Template. Possible formation of reactive intermediates of amonafide and 3-methylindole was also examined on CYP1A2 Template. Placements of amonafide suggested the scare N-oxidation of the arylamine part due to the Trigger-residue interaction. Placements of 3-methylindole suggested the formation of a reactive intermediate, 3-methyleneindolenine, rather selectively on rodent CYP1A2 than on human CYP1A2, in consistent with the experimental data. These results suggest that CYP Template systems developed are effective tools to warn an appearance of unstable reactive intermediates. Our CYP-Template systems would support confident judgements in safety assessments through offering the mechanistic understandings of the metabolism.
RESUMO
A Template system for a prediction of human CYP2E1-mediated reactions (Drug Metab Rev 2011) has been refined with the introduction of ideas of Trigger-residue and the residue-initiated movement of ligands in the active site. The refined system also includes ideas of bi-molecule binding and angled-placement, which allow to sit diverse types of ligands on Template. With the use of these ideas in common with other Template systems for human CYP1A1, CYP1A2 and CYP3A4 (Drug Metab Pharmacokinet 2016, 2017, 2019, and 2020), 349 reactions of 192 distinct chemicals published as CYP2E1 ligands were examined in the refined system. Verifications of good and poor substrates, regioselectivity and also inhibitory interaction were available faithfully for these ligands from their placements on the refined Template and rules for interaction modes, accompanied with their deciphering information to lead to the judgements. The refined CYP2E1 Template system will thus offer more reliable estimations of human CYP2E1 catalysis toward ligands of diverse structures.
Assuntos
Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2E1 , Domínio Catalítico , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos , LigantesRESUMO
Starting from established CYP3A4 Template (DMPK. 2019, and 2020), CYP3A5 and CYP3A7 Templates have been constructed to be reliable tools for verification of their distinct catalytic properties. A distinct occupancy was observed on CYP3A4-selective ligands, but not on the non-selective ligands, in simulation experiments. These ligands often invade into Bay-1 region during the migration from Entrance to Site of oxidation in simulation experiments. These results offered an idea of the distinct localization of Bay-1 residue on CYP3A5 Template, in which the Bay-1 residue stayed closely to Template border. The idea also accounted for the higher oxidation rates of CYP3A5, than of CYP3A4, of noscapine and schisantherin E through their enhanced sitting-stabilization. Typical CYP3A7 substrates such as zonisamide and retinoic acids took their placements without occupying a left side region of Template for their metabolisms. In turn, the occupancies of the left-side region were inevitably observed among poor ligands of CYP3A7. Altered extent of IJK-Interaction or localization of a specific residue at the left-side would thus explain distinct catalytic properties of CYP3A7 on Template. These data suggest the alteration of each one of Template region, from CYP3A4 Template, led to the distinct catalytic properties of CYP3A5 and CYP3A7 forms.
Assuntos
Citocromo P-450 CYP3A/metabolismo , Catálise , Humanos , Ligantes , Oxirredução , Tretinoína/metabolismo , Zonisamida/metabolismoRESUMO
Cytochrome P450 (CYP)-mediated metabolisms are often associated with biological and toxicological events of chemicals. A major hepatic enzyme, CYP3A4, showed clear distinctions on their catalyses even among ligands having resemble structures. To better understand mechanisms of their distinct catalyses, possible associations of ligand interactions at specific parts of CYP3A4 residues were investigated using CYP3A4-Template system developed (DMPK 2019 and 2020). A placement was available selectively for CYP3A4-mediated R-thalidomide 5-oxidation on Template, but not for the 5'-oxidation and the S-isomer oxidations. Similar placements were generated for pomalidomide (4-amino-thalidomide), but not for a poor ligand, lenalidomide (3-deoxy-pomalidomide). The latter ligand took placements lacking IJK-Interaction or sticking the 4-amino part beyond the facial-side wall on Template. A placement was available for the tert-butyl oxidation of terfenadine, but not for an analog, ebastine. Their interactions with upper-Cavity-2 residue were expected to differ at their sites of oxygen substituents. Some phenolic antioxidants behave distinctly toward biological oxidations in vitro and in vivo. Butylated hydroxytoluene is oxidized to the peroxy-derivative in vitro, but solely to the oxidized metabolites at the benzyl and tert-butyl methyl positions in vivo. Involvement of CYP3A4 were suggested for all the three reactions from the placements on Template. Tocopherols were also applied on Template for the oxidations for chroman and side-chain terminals. The primary placement was suggested to undergo the futile-recycling through formation of the peroxide intermediate subsequently to lead the substantial lack of the CYP3A4-mediated oxidation. These data suggest the effectiveness of CYP3A4-Template assessment to understand the causal basis of poor oxidations and also to verify the in vivo contribution of CYP3A4-mediated peroxidative reactions.
RESUMO
Long-term administration of some antiepileptic drugs often increases blood lipid levels. In this study, we investigated its molecular mechanism by focusing on the nuclear receptors constitutive active/androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα), which are key transcription factors for enzyme induction and lipid metabolism, respectively, in the liver. Treatment of mice with the CAR activator phenobarbital, an antiepileptic drug, increased plasma triglyceride levels and decreased the hepatic expression of PPARα target genes related to lipid metabolism. The increase in PPARα target gene expression induced by fenofibrate, a PPARα ligand, was inhibited by cotreatment with phenobarbital. CAR suppressed PPARα-dependent gene transcription in HepG2 cells but not in COS-1 cells. The mRNA level of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), a coactivator for both CAR and PPARα, in COS-1 cells was much lower than in HepG2 cells. In reporter assays with COS-1 cells overexpressing PGC1α, CAR suppressed PPARα-dependent gene transcription, depending on the coactivator-binding motif. In mammalian two-hybrid assays, CAR attenuated the interaction between PGC1α and PPARα Chemical inhibition of PGC1α prevented phenobarbital-dependent increases in plasma triglyceride levels and the inhibition of PPARα target gene expression. These results suggest that CAR inhibits the interaction between PPARα and PGC1α, attenuating PPARα-dependent lipid metabolism. This might explain the antiepileptic drug-induced elevation of blood triglyceride levels. SIGNIFICANCE STATEMENT: Constitutive active/androstane receptor activated by antiepileptic drugs inhibits the peroxisome proliferator-activated receptor α-dependent transcription of genes related to lipid metabolism and upregulates blood triglyceride levels. The molecular mechanism of this inhibition involves competition between these nuclear receptors for coactivator peroxisome proliferator-activated receptor γ coactivator-1α binding.
Assuntos
Anticonvulsivantes/farmacologia , PPAR alfa/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Triglicerídeos/sangue , Animais , Linhagem Celular Tumoral , Receptor Constitutivo de Androstano , Indução Enzimática/efeitos dos fármacos , Fenofibrato/farmacologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenobarbital/farmacologia , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacosRESUMO
Catalytic interactions of CYP3A4 with large-size ligands have been studied on the Template established in our previous studies using polyaromatic hydrocarbon and steroid ligands (DMPK 34: 113-125 and 351-364 2019 and in press 2020). Typical CYP3A4-substrates including erythromycin, cyclosporin A (ca.1200 Da), ivermectin B1a and taxanes were applied successfully and regioselective metabolisms of these ligands were reconstituted faithfully on Template. These results suggest the applicability of CYP3A4 Template throughout broadened sizes of CYP3A4 ligands. Macrolide antibiotics showed distinct degrees of tight sittings in Width-gauge, a tool for accommodation measure. The observed differences were associated with different inhibitory/inactivation potentials of troleandomycin, erythromycin, clarithromycin and azithromycin, suggesting CYP3A4 Template also as a tool for drug-interaction mechanisms. Slight expansion of Template area was made at near Site of oxidation from simulation results of antitumor agent, rilpivirine, in the present study. Ligand entry from left side of Template is also suggested from macrolide interactions. Broadened applicability of the refined CYP3A4 Template were assured with experiments with various large-size ligands.
Assuntos
Anti-Infecciosos/metabolismo , Antineoplásicos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Modelos Moleculares , Anti-Infecciosos/química , Antineoplásicos/química , Biotransformação , Domínio Catalítico , Simulação por Computador , Citocromo P-450 CYP3A/química , Humanos , Ligantes , Macrolídeos/química , Macrolídeos/metabolismo , Oxirredução , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Human CYP3A4 is involved in metabolisms of diverse hydrophobic chemicals. Using the data of therapeutic azole fungicides known to interact with CYP3A4, applicability of CYP3A4 Template system was first confirmed to reconstitute faithfully the interaction on Template. More than twenty numbers of pesticide azoles were then applied to the Template system. All the azole stereo-isomers applied, except for talarozole, interacted through nitrogen atoms of triazole or imidazole parts and sat stably for inhibitions through fulfilling three-essential interactions. For their CYP3A4-mediated oxidations, clear distinctions were suggested among the enantiomers and diastereomers of azole pesticides on Templates. Thus, the stereoisomers would have their-own regio- and stereo-selective profiles of the metabolisms. A combined metabolic profile of each azole obtained with CYP3A4 Template system, however, resembled with the reported profile of the in vivo metabolism in rats. These results suggest the major roles of CYP3A forms on the metabolisms of most of azole pesticides in both rats and humans. Free triazole is a metabolite of azole fungicides having a methylene-spacer between triazole and the rest of the main structures in experimental animals and humans. During the simulation experiments, a placement for the oxidation of a methylene spacer between the triazole and main carbon-skeleton was found to be available throughout the azole fungicides tested on Template. The occurrence of this reaction to lead to triazole-release is thus discussed in relation to the possible involvement of CYP3A forms.
RESUMO
Modes of interactions of small ligands with CYP3A4 have been defined using the Template established in our previous studies (DMPK. 34: 113-125 2019 and 34 351-364 2019). Interactions of polyaromatic hydrocarbons such as benzo[a]pyrene, pyrene and dibenzo[a,j]acridine were refined with the idea of Right-side movement of ligands at Rings A and B of Template. Expected formation of metabolites from the placements faithfully matched with experimentally observed sites of their metabolisms and also with preferred orders of regio-isomeric metabolite abundances in recombinant CYP3A4 system. In comparison of CYP3A4-ligand data with the placements on simulations, a futile sitting of non-substituted and free rotatable phenyl structures was suggested as a cause of poor oxidations of the phenyl parts of CYP3A4 ligands. These data were in turn indicative of the role of the rotation-ceasing action for the function. Typical inhibitors, ketoconazole, nicardipine, mibefradil and GF-I-1 shared mutuality on their sittings, in which the inhibitor molecules hold a CYP3A4 residue from dual sides on Template. In addition, clotrimazole would be stuck between facial- and rear-side walls of CYP3A4 and interact with ferric iron through nitrogen atom of the imidazole part. These data offered structural bases of CYP3A4-inhibitory actions of ligands.
Assuntos
Cumarínicos/química , Inibidores do Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/química , Cetoconazol/química , Mibefradil/química , Nicardipino/química , Cumarínicos/farmacologia , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Humanos , Cetoconazol/farmacologia , Ligantes , Mibefradil/farmacologia , Estrutura Molecular , Nicardipino/farmacologiaRESUMO
A simulation system for ligand interaction of human CYP1A1 has been developed using "Template" composed of hexagonal grids, as a modification of CYP1A2 system established previously. Differing from CYP1A2 Template, Site of Oxidation of CYP1A1 was located one-grid (Ring) away horizontally from Trigger-Region (Ring B) on CYP1A1 Template. Simultaneous interaction at Site of Oxidation and Trigger-Region as uni- or bi-molecule binding was maintained with CYP1A1 as well as CYP1A2 for the functional contributions. Reciprocal comparison of simulation results with experimental data suggested the access of ligands to Site of Oxidation inside of CYP1A1, through three distinct routes, termed Sideway, Center-Area and Thick-Area. To facilitate the verification of feasible placement(s), typical modes of the regional interactions have been defined and developed for prognostic devices. Simulation experiments of human and rat CYP1A1 offered possible causative mechanisms of the species difference as their distinct interactions near Site of Oxidation. The present CYP1A1 Template system has been proven to afford regio- and stereo-chemically feasible placements, through the use of the prognostic devices, of total of 353 CYP1A1-mediated reactions of 223 of distinct ligands, including substrates, inhibitors and poor substrates of drugs, environmental chemicals and endobiotics.
Assuntos
Citocromo P-450 CYP1A1/metabolismo , Inibidores das Enzimas do Citocromo P-450/metabolismo , Animais , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/química , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Humanos , Ligantes , Estrutura Molecular , RatosRESUMO
BACKGROUND AND PURPOSE: Cytochrome P450 (CYP, P450) 3A4 is involved in the metabolism of 50% of drugs and its catalytic activity in vivo is not explained only by hepatic expression levels. We previously demonstrated that UDP-glucuronosyltransferase (UGT) 2B7 suppressed CYP3A4 activity through an interaction. In the present study, we target UGT1A9 as another candidate modulator of CYP3A4. EXPERIMENTAL APPROACH: We prepared co-expressed enzymes using the baculovirus-insect cell expression system and compared CYP3A4 activity in the presence and absence of UGT1A9. Wistar rats were treated with dexamethasone and liver microsomes were used to elucidate the role of CYP3A-UGT1A interactions. KEY RESULTS: UGT1A9 and UGT2B7 interacted with and suppressed CYP3A4. Kinetic analyses showed that both of the UGTs significantly reduced Vmax of CYP3A4 activity. In addition, C-terminal truncated mutants of UGT1A9 and UGT2B7 still retained the suppressive capacity. Dexamethasone treatment induced hepatic CYP3As and UGT1As at different magnitudes. Turnover of CYP3A was enhanced about twofold by this treatment. CONCLUSION AND IMPLICATIONS: The changes of kinetic parameters suggested that UGT1A9 suppressed CYP3A4 activity with almost the same mechanism as UGT2B7. The luminal domain of UGTs contains the suppressive interaction site(s), whereas the C-terminal domain may contribute to modulating suppression in a UGT isoform-specific manner. CYP3A-UGT1A interaction seemed to be disturbed by dexamethasone treatment and the suppression was partially cancelled. CYP3A4-UGT interactions would help to better understand the causes of inter/intra-individual differences in CYP3A4 activity.
Assuntos
Citocromo P-450 CYP3A/metabolismo , Glucuronosiltransferase , Microssomos Hepáticos , Animais , Glucuronosiltransferase/genética , Isoformas de Proteínas , Ratos , Ratos WistarRESUMO
Using over fifty steroidal ligands, CYP3A4 Template system established in our previous study (DMPK 34: 113-125, 2019) has been evaluated for the applicability for prediction of regioselective metabolisms of steroids in the present study. Plural regional interactions near Site of Oxidation of CYP3A4 (Slide-down and Adaptation) are newly defined for steroid ligands in addition to previously characterized Trigger- and IJL-interactions on Template. Interaction of steroids at ring-A with CYP3A4 residue (Front-residue), at the facial side of Ring B of Template, determined the availability of ligand sitting at Rings A and B of Template. Steroids having 3-one-4-ene structures, which are not stacked on Front-residue, thus slide down for their 6-oxidations. Some steroids with 3ß-ol structures undergo the further right-side movement (Adaptation) for their 7-oxidations. Similar overpassing phenomena are also expected for steroid 15/16-oxidations and 2/1-oxidations. Allowable width on ligand accommodation was also defined as Width-gauge of Template. Reciprocal comparison of sittings of steroids on Template with experimental data offered idea of CYP3A4-mediated oxidations of steroids through seven distinct types of placements on Template and of the relationship with their usage abundance. The present system would offer practical way for structural identification and verification of CYP3A4-mediated metabolisms of various types of steroids.
Assuntos
Citocromo P-450 CYP3A/química , Esteroides/química , Citocromo P-450 CYP3A/metabolismo , Humanos , Ligantes , Estrutura Molecular , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Esteroides/metabolismoRESUMO
Differences in CYP1A2-mediated metabolisms in human, rat and mouse have been analyzed with Template of human CYP1A2 established in our previous studies (Drug Metab Pharmacokinet 31:363, 2016 and 32:229, 2017). Using more than 25 chemicals including phenanthrene, MeIQx, PhIP, caffeine and furafylline, Template for human CYP1A2 was found to be applicable for rat and mouse CYP1A2 reactions with the consideration of five distinct regional interactions: 1) Expanded use of Ring D region of pro-metabolized molecules and also of trigger molecules, 2) acceptance of secondary amino groups at Position 31 of Ring eC1, 3) overlapping of pro-metabolized and trigger molecules at Ring eC4, 4) restricted maneuvering of substrates into Bay 1 region, and 5) allowance of passage of slightly large ligands in Thin-Area. These distinction points were found to be mutual for both substrates and inhibitors. In the present study, the decision-tree for substrates entering from Thin-Area has been reevaluated in consideration of species differences in human and rodent CYP1A2 forms. As the results, five steps of verification procedures have been introduced to predict the occurrence order of the regioselective metabolisms.