Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(31)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37075714

RESUMO

The non-collinear antiferromagnetic Weyl semimetal Mn3X (X = Ga, Ge, Sn) system has attracted a lot of attentions owing to its robust anomalous Hall effect (AHE), large spin Hall angle and small net magnetization at room temperature. The high spin-charge interconversion efficiency makes it a super candidate in topological antiferromagnetic spintronic devices, which could facilitate ultra-fast operation of high-density devices with low energy consumption. In this work, we have realized to obtain different chiral spin structures in Heusler alloy Mn3Ge thin films, which originate from different crystalline orientations. The high-quality (0002)- and (202¯0)-oriented single phase hexagonal Mn3Ge films are achieved by controllable growth, annealing process and ion implantation. The various magnetic properties and AHE behaviors are observed alongaandccrystal axes, equivalent to magnetic field in and out of the inverse triangular spin plane. The observation demonstrates the manipulation of crystal structure accompanied with chiral spin order in a non-collinear antiferromagnetic Mn3Ge film, which is induced by energy conversion and defect introduction. Thein situthermal treatment induces crystal phase rotation up to 90° and robust AHE modulation, which is significantly important and highly desirable for flexible spin memory device applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36888898

RESUMO

Precise manipulation of skyrmion nucleation in microscale or nanoscale areas of thin films is a critical issue in developing high-efficient skyrmionic memories and logic devices. Presently, the mainstream controlling strategies focus on the application of external stimuli to tailor the intrinsic attributes of charge, spin, and lattice. This work reports effective skyrmion manipulation by controllably modifying the lattice defect through ion implantation, which is potentially compatible with large-scale integrated circuit technology. By implanting an appropriate dose of nitrogen ions into a Pt/Co/Ta multilayer film, the defect density was effectively enhanced to induce an apparent modulation of magnetic anisotropy, consequently boosting the skyrmion nucleation. Furthermore, the local control of skyrmions in microscale areas of the macroscopic film was realized by combining the ion implantation with micromachining technology, demonstrating a potential application in both binary storage and multistate storage. These findings provide a new approach to advancing the functionalization and application of skyrmionic devices.

3.
Nat Mater ; 16(7): 712-716, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28369053

RESUMO

All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

4.
Sci Rep ; 6: 28458, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329068

RESUMO

The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

5.
Sci Rep ; 6: 20778, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26856379

RESUMO

Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA