Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1012186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325547

RESUMO

Common bean (Phaseolus vulgaris) is an important food crop; however, its production is affected by salt stress. Salt stress can inhibit seed germination, promote senescence, and modify cell wall biosynthesis, assembly, and architecture. Melatonin, an indole heterocycle, has been demonstrated to greatly impact cell wall structure, composition, and regulation in plants under stress. However, the molecular basis for such assumptions is still unclear. In this study, a common bean variety, "Naihua" was treated with water (W), 70 mmol/L NaCl solution (S), and 100 µmol/L melatonin supplemented with salt solution (M+S) to determine the response of common bean to exogenous melatonin and explore regulatory mechanism of melatonin against salt stress. The results showed that exogenous melatonin treatment alleviated salt stress-induced growth inhibition of the common bean by increasing the length, surface area, volume, and diameter of common bean sprouts. Moreover, RNA sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) indicated that the cell wall regulation pathway was involved in the salt stress tolerance of the common bean enhanced by melatonin. Screening of 120 germplasm resources revealed that melatonin treatment improved the salt tolerance of more than 65% of the common bean germplasm materials. Melatonin also up-regulated cell wall pathway genes by at least 46%. Furthermore, we analyzed the response of the common bean germplasm materials to melatonin treatment under salt stress using the key genes associated with the synthesis of the common bean cell wall as the molecular markers. The results showed that two pairs of markers were significantly associated with melatonin, and these could be used as candidate markers to predict whether common bean respond to exogenous melatonin and then enhance salt tolerance at the sprouting stage. This study shows that cell wall can respond to exogenous melatonin and enhance the salt tolerance of common bean. The makers identified in this study can be used to select common bean varieties that can respond to melatonin under stress. Overall, the study found that cell wall could response melatonin and enhance the salt tolerance and developed the makers for predicting varieties fit for melatonin under stress in common bean, which may be applied in the selection or development of common bean varieties with abiotic stress tolerance.

2.
Front Plant Sci ; 11: 587244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193539

RESUMO

NF-YA transcription factors function in modulating tolerance to abiotic stresses that are serious threats to crop yields. In this study, GmNFYA13, an NF-YA gene in soybean, was strongly induced by salt, drought, ABA, and H2O2, and suppressed by tungstate, an ABA synthesis inhibitor. The GmNFYA13 transcripts were detected in different tissues in seedling and flowering stages, and the expression levels in roots were highest. GmNFYA13 is a nuclear localization protein with self-activating activity. Transgenic Arabidopsis plants overexpressing GmNFYA13 with higher transcript levels of stress-related genes showed ABA hypersensitivity and enhanced tolerance to salt and drought stresses compared with WT plants. Moreover, overexpression of GmNFYA13 resulted in higher salt and drought tolerance in OE soybean plants, while suppressing it produced the opposite results. In addition, GmNFYA13 could bind to the promoters of GmSALT3, GmMYB84, GmNCED3, and GmRbohB to regulate their expression abundance in vivo. The data in this study suggested that GmNFYA13 enhanced salt and drought tolerance in soybean plants.

3.
Front Genet ; 11: 564607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101386

RESUMO

CCCH (C3H) zinc-finger proteins are involved in plant biotic and abiotic stress responses, growth and development, and disease resistance. However, studies on C3H genes in Phaseolus vulgaris L. (common bean) are limited. Here, 29 protein-encoding C3H genes, located on 11 different chromosomes, were identified in P. vulgaris. A phylogenetic analysis categorized the PvC3Hs into seven subfamilies on the basis of distinct features, such as exon-intron structure, cis-regulatory elements, and MEME motifs. A collinearity analysis revealed connections among the PvC3Hs in the same and different species. The PvC3H genes showed tissue-specific expression patterns during the sprout stage, as assessed by real-time quantitative PCR (RT-qPCR). Using RNA-sequencing and RT-qPCR data, PvC3Hs were identified as being enriched through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses in binding, channel activity, and the spliceosome pathway. These results provide useful information and a rich resource that can be exploited to functionally characterize and understand PvC3Hs. These PvC3Hs, especially those enriched in binding, channel activity, and the spliceosome pathway will further facilitate the molecular breeding of common bean and provide insights into the correlations between PvC3Hs and salt-stress responses during the sprout stage.

4.
Genes (Basel) ; 10(6)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142023

RESUMO

Soybeans are an important cash crop and are widely used as a source of vegetable protein and edible oil. MicroRNAs (miRNA) are endogenous small RNA that play an important regulatory role in the evolutionarily conserved system of gene expression. In this study, we selected four lines with extreme phenotypes, as well as high or low protein and oil content, from the chromosome segment substitution line (CSSL) constructed from suinong (SN14) and ZYD00006, and planted and sampled at three stages of grain development for small RNA sequencing and expression analysis. The sequencing results revealed the expression pattern of miRNA in the materials, and predicted miRNA-targeted regulatory genes, including 1967 pairs of corresponding relationships between known-miRNA and their target genes, as well as 597 pairs of corresponding relationships between novel-miRNA and their target genes. After screening and annotating genes that were targeted for regulation, five specific genes were identified to be differentially expressed during seed development and subsequently analyzed for their regulatory relationship with miRNAs. The expression pattern of the targeted gene was verified by Real-time Quantitative PCR (RT-qPCR). Our research provides more information about the miRNA regulatory network in soybeans and further identifies useful genes that regulate storage during soy grain development, providing a theoretical basis for the regulation of soybean quality traits.


Assuntos
Genes Reguladores/genética , Glycine max/genética , Sementes/genética , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Anotação de Sequência Molecular , Desenvolvimento Vegetal/genética , Proteínas de Armazenamento de Sementes/genética , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA