RESUMO
OBJECTIVES: To determine the proportion of individuals with detectable antigen in plasma or serum after SARS-CoV-2 infection and the association of antigen detection with postacute sequelae of COVID-19 (PASC) symptoms. METHODS: Plasma and serum samples were collected from adults participating in four independent studies at different time points, ranging from several days up to 14 months post-SARS-CoV-2 infection. The primary outcome measure was to quantify SARS-CoV-2 antigens, including the S1 subunit of spike, full-length spike, and nucleocapsid, in participant samples. The presence of 34 commonly reported PASC symptoms during the postacute period was determined from participant surveys or chart reviews of electronic health records. RESULTS: Of the 1569 samples analysed from 706 individuals infected with SARS-CoV-2, 21% (95% CI, 18-24%) were positive for either S1, spike, or nucleocapsid. Spike was predominantly detected, and the highest proportion of samples was spike positive (20%; 95% CI, 18-22%) between 4 and 7 months postinfection. In total, 578 participants (82%) reported at least one of the 34 PASC symptoms included in our analysis ≥1 month postinfection. Cardiopulmonary, musculoskeletal, and neurologic symptoms had the highest reported prevalence in over half of all participants, and among those participants, 43% (95% CI, 40-45%) on average were antigen-positive. Among the participants who reported no ongoing symptoms (128, 18%), antigen was detected in 28 participants (21%). The presence of antigen was associated with the presence of one or more PASC symptoms, adjusting for sex, age, time postinfection, and cohort (OR, 1.8; 95% CI, 1.4-2.2). DISCUSSION: The findings of this multicohort study indicate that SARS-CoV-2 antigens can be detected in the blood of a substantial proportion of individuals up to 14 months after infection. While approximately one in five asymptomatic individuals was antigen-positive, roughly half of all individuals reporting ongoing cardiopulmonary, musculoskeletal, and neurologic symptoms were antigen-positive.
RESUMO
Antiretroviral treatment (ART) initiation during the early stages of HIV-1 infection is associated with a higher probability of maintaining drug-free viral control during subsequent treatment interruptions, for reasons that remain unclear. Using samples from a randomized-controlled human clinical trial evaluating therapeutic HIV-1 vaccines, we here show that early ART commencement is frequently associated with accelerated and efficient selection of genome-intact HIV-1 proviruses in repressive chromatin locations during the first year after treatment initiation. This selection process was unaffected by vaccine-induced HIV-1-specific T cell responses. Single-cell proteogenomic profiling demonstrated that cells harboring intact HIV-1 displayed a discrete phenotypic signature of immune selection by innate immune responses, characterized by a slight but significant upregulation of HLA-C, HLA-G, the IL-10 receptor, and other markers involved in innate immune regulation. Together, these results suggest an accelerated immune selection of viral reservoir cells during early-treated HIV-1 infection that seems at least partially driven by innate immune responses.
Assuntos
Infecções por HIV , HIV-1 , Imunidade Inata , Humanos , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Provírus/genética , Masculino , Vacinas contra a AIDS/imunologiaRESUMO
Background: Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are the main barrier to cure efforts. Antiretroviral therapy (ART) intensification by early initiation has been shown to enable post-treatment viral control in some cases but the underlying mechanisms are not fully understood. We hypothesized that ART initiated during the hyperacute phase of infection before peak will affect the size, decay dynamics and landscape characteristics of HIV-1 subtype C viral reservoirs. Methods: We studied 35 women at high risk of infection from Durban, South Africa identified with hyperacute HIV infection by twice weekly testing for plasma HIV-1 RNA. Study participants included 11 who started ART at a median of 456 (297-1203) days post onset of viremia (DPOV), and 24 who started ART at a median of 1 (1-3) DPOV. We used peripheral blood mononuclear cells (PBMC) to measure total HIV-1 DNA by ddPCR and to sequence reservoir viral genomes by full length individual proviral sequencing (FLIP-seq) from onset of detection of HIV up to 1 year post treatment initiation. Results: Whereas ART in hyperacute infection blunted peak viremia compared to untreated individuals (p<0.0001), there was no difference in total HIV-1 DNA measured contemporaneously (p=0.104). There was a steady decline of total HIV DNA in early treated persons over 1 year of ART (p=0.0004), with no significant change observed in the late treated group. Total HIV-1 DNA after one year of treatment was lower in the early treated compared to the late treated group (p=0.02). Generation of 697 single viral genome sequences revealed a difference in the longitudinal proviral genetic landscape over one year between untreated, late treated, and early treated infection: the relative contribution of intact genomes to the total pool of HIV-1 DNA after 1 year was higher in untreated infection (31%) compared to late treated (14%) and early treated infection (0%). Treatment initiated in both late and early infection resulted in a more rapid decay of intact (13% and 51% per month) versus defective (2% and 35% per month) viral genomes. However, intact genomes were still observed one year post chronic treatment initiation in contrast to early treatment where intact genomes were no longer detectable. Moreover, early ART reduced phylogenetic diversity of intact genomes and limited the seeding and persistence of cytotoxic T lymphocyte immune escape variants in the reservoir. Conclusions: Overall, our results show that whereas ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding, it was nevertheless associated with more rapid decay of intact viral genomes, decreased genetic complexity and immune escape in reservoirs, which could accelerate reservoir clearance when combined with other interventional strategies.
RESUMO
Exceptional elite controllers represent an extremely rare group of people with HIV-1 (PWH) who exhibit spontaneous, high-level control of viral replication below the limits of detection in sensitive clinical monitoring assays and without disease progression in the absence of antiretroviral therapy for prolonged periods, frequently exceeding 25 years. Here, we discuss the different cases that have been reported in the scientific literature, their unique genetic, virological, and immunological characteristics, and their relevance as the best model for the functional cure of HIV-1.
Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Infecções por HIV/imunologia , Replicação Viral/efeitos dos fármacos , Sobreviventes de Longo Prazo ao HIV , Carga Viral/efeitos dos fármacosRESUMO
Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.
Assuntos
Infecções por HIV , HIV-1 , Latência Viral , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Latência Viral/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologiaRESUMO
CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.
Assuntos
Infecções por HIV , HIV-1 , Inibidores de Histona Desacetilases , Interferon-alfa , Panobinostat , Provírus , Humanos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Panobinostat/uso terapêutico , Provírus/efeitos dos fármacos , Latência Viral , Inibidores de Histona Desacetilases/uso terapêutico , Interferon-alfa/uso terapêuticoRESUMO
BACKGROUNDPersistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure.METHODSThe characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq).RESULTSPCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs.CONCLUSIONSThese results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.FUNDINGInstituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.
Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Leucócitos Mononucleares , Provírus/genética , Infecções por HIV/tratamento farmacológico , Antirretrovirais/uso terapêuticoRESUMO
Pregnancy is a risk factor for increased severity of SARS-CoV-2 and other respiratory infections. The mechanisms underlying this risk have not been well-established, partly due to a limited understanding of how pregnancy shapes immune responses. To gain insight into the role of pregnancy in modulating immune responses at steady state and upon perturbation, we collected peripheral blood mononuclear cells (PBMC), plasma, and stool from 226 women, including 152 pregnant individuals (n = 96 with SARS-CoV-2 infection and n = 56 healthy controls) and 74 non-pregnant women (n = 55 with SARS-CoV-2 and n = 19 healthy controls). We found that SARS-CoV-2 infection was associated with altered T cell responses in pregnant compared to non-pregnant women. Differences included a lower percentage of memory T cells, a distinct clonal expansion of CD4-expressing CD8 + T cells, and the enhanced expression of T cell exhaustion markers, such as programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain-3 (Tim-3), in pregnant women. We identified additional evidence of immune dysfunction in severely and critically ill pregnant women, including a lack of expected elevation in regulatory T cell (Treg) levels, diminished interferon responses, and profound suppression of monocyte function. Consistent with earlier data, we found maternal obesity was also associated with altered immune responses to SARS-CoV-2 infection, including enhanced production of inflammatory cytokines by T cells. Certain gut bacterial species were altered in pregnancy and upon SARS-CoV-2 infection in pregnant individuals compared to non-pregnant women. Shifts in cytokine and chemokine levels were also identified in the sera of pregnant individuals, most notably a robust increase of interleukin-27 (IL-27), a cytokine known to drive T cell exhaustion, in the pregnant uninfected control group compared to all non-pregnant groups. IL-27 levels were also significantly higher in uninfected pregnant controls compared to pregnant SARS-CoV-2-infected individuals. Using two different preclinical mouse models of inflammation-induced fetal demise and respiratory influenza viral infection, we found that enhanced IL-27 protects developing fetuses from maternal inflammation but renders adult female mice vulnerable to viral infection. These combined findings from human and murine studies reveal nuanced pregnancy-associated immune responses, suggesting mechanisms underlying the increased susceptibility of pregnant individuals to viral respiratory infections.
RESUMO
BACKGROUND: Compared with HIV-1 infection, HIV-2 infection is associated with a slower progression to AIDS. Understanding the persistence of HIV-2 infection might inform the mechanisms responsible for differences in the pathogenicity of HIV-2 versus HIV-1. METHODS: In this study, we analyzed the genetic composition of the proviral reservoir in archived blood samples collected from 13 untreated HIV-2-infected adults from Senegal. We used single-genome, near-full-length individual proviral sequencing (FLIP-Seq) to assess the relative frequency of intact and defective proviruses. RESULTS: Ten out of 13 (77%) study participants demonstrated virologic suppression (<90 HIV RNA copies/ml) while the remaining 3 (23%) had detectable HIV RNA. We obtained 363 proviral sequences from peripheral blood mononuclear cells (PBMCs) from the 13 study participants. Within these sequences, 342 (94%) defective proviruses were detected. Twenty-one (6%) intact proviruses were detected from three study participants, with one study participant displaying a large clone consisting of 16 genome-intact sequences. CONCLUSION: This data suggests that similar to HIV-1 infection, the proviral landscape of HIV-2 is dominated by defective proviruses.
Assuntos
Infecções por HIV , Provírus , Adulto , Humanos , Provírus/genética , HIV-2/genética , Leucócitos Mononucleares , Carga Viral , RNA , Linfócitos T CD4-PositivosRESUMO
As the principal effector cell population of the innate immune system, natural killer (NK) cells may make critical contributions to natural, immune-mediated control of HIV-1 replication. Using genome-wide assessments of activating and inhibitory chromatin features, we demonstrate here that cytotoxic NK (cNK) cells from elite controllers (ECs) display elevated activating histone modifications at the interleukin 2 (IL-2)/IL-15 receptor ß chain and the BCL2 gene loci. These histone changes translate into increased responsiveness of cNK cells to paracrine IL-15 secretion, which coincides with higher levels of IL-15 transcription by myeloid dendritic cells in ECs. The distinct immune crosstalk between these innate immune cell populations results in improved IL-15-dependent cNK cell survival and cytotoxicity, paired with a metabolic profile biased toward IL-15-mediated glycolytic activities. Together, these results suggest that cNK cells from ECs display a programmed IL-15 response signature and support the emerging role of innate immune pathways in natural, drug-free control of HIV-1.
Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Interleucina-15 , Células Matadoras Naturais , Células Dendríticas/metabolismo , Controladores de EliteRESUMO
HIV-1 reservoir cells that circulate in peripheral blood during suppressive antiretroviral therapy (ART) have been well characterized, but little is known about the dissemination of HIV-1-infected cells across multiple anatomical tissues, especially the CNS. Here, we performed single-genome, near full-length HIV-1 next-generation sequencing to evaluate the proviral landscape in distinct anatomical compartments, including multiple CNS tissues, from 3 ART-treated participants at autopsy. While lymph nodes and, to a lesser extent, gastrointestinal and genitourinary tissues represented tissue hotspots for the persistence of intact proviruses, we also observed intact proviruses in CNS tissue sections, particularly in the basal ganglia. Multi-compartment dissemination of clonal intact and defective proviral sequences occurred across multiple anatomical tissues, including the CNS, and evidence for the clonal proliferation of HIV-1-infected cells was found in the basal ganglia, in the frontal lobe, in the thalamus and in periventricular white matter. Deep analysis of HIV-1 reservoirs in distinct tissues will be informative for advancing HIV-1 cure strategies.
Approximately 39 million people in the world live with HIV infection. Currently available treatments can reduce the amount of virus to near undetectable levels. But they do not eliminate the virus. A reservoir of HIV-infected cells persists during treatment. If treatment stops, these cells can cause rebounding virus levels and a return of symptoms. As a result, patients living with HIV must remain on treatment their entire lives. HIV reservoir cells often do not express viral proteins, making them hard for the immune system to find and destroy. Many of these reservoir cells occur in lymph nodes, which makes them difficult for researchers to access for study. Learning more about where these cells hide in the body may enable scientists to develop new treatments to help eliminate them. Sun et al. show that HIV reservoir cells exist in many body tissues, including the brain. In the experiments, Sun et al. used single HIV genome sequencing to identify HIV genetic sequences in the brain and other body tissues from three recently deceased individuals with HIV. The individuals agreed to donate their tissues for postmortem studies before their deaths. All received antiretroviral therapy until death. The experiments identified functional HIV genetic sequences in lymph nodes and gastrointestinal tissues, known hotspots for HIV-infected cells. Sun et al. also found genetically intact HIV in brain tissue from two of the individuals. The HIV genetic sequences were identical to sequences found in other body tissues. This discovery suggests HIV-infected cells had divided into more HIV-infected cells and spread. The results suggest that cells harboring intact HIV invade the brain and persist there for extended periods during antiretroviral therapy. To eradicate the virus, interventions targeting HIV reservoir cells must be able to reach the brain. This new information may help researchers developing HIV-reservoir targeting drugs decide which candidates will likely be the most effective. Future studies may also shed light on how HIV reaches the brain and how the infected cells escape destruction by immune cells, which may suggest more treatment strategies.
Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Provírus/genética , Encéfalo , Gânglios da Base , Infecções por HIV/tratamento farmacológicoRESUMO
HIV-1 reservoir cells that circulate in peripheral blood during suppressive antiretroviral therapy (ART) have been well characterized, but little is known about the dissemination of HIV-1-infected cells across multiple anatomical tissues, especially the central nervous system (CNS). Here, we performed single-genome, near full-length HIV-1 next-generation sequencing to evaluate the proviral landscape in distinct anatomical compartments, including multiple CNS tissues, from 3 ART-treated participants at autopsy. While lymph nodes and, to a lesser extent, gastrointestinal and genitourinary tissues represented tissue hotspots for the persistence of intact proviruses, we also observed intact proviruses in CNS tissue sections, particularly in the basal ganglia. Multi-compartment dissemination of clonal intact and defective proviral sequences occurred across multiple anatomical tissues, including the CNS, and evidence for the clonal proliferation of HIV-1-infected cells was found in the basal ganglia, in the frontal lobe, in the thalamus and in periventricular white matter. Deep analysis of HIV-1 reservoirs in distinct tissues will be informative for advancing HIV-1 cure strategies.
RESUMO
Although therapeutic B cell depletion dramatically resolves inflammation in many diseases in which antibodies appear not to play a central role, distinct extrafollicular pathogenic B cell subsets that accumulate in disease lesions have hitherto not been identified. The circulating immunoglobulin D (IgD)-CD27-CXCR5-CD11c+ DN2 B cell subset has been previously studied in some autoimmune diseases. A distinct IgD-CD27-CXCR5-CD11c- DN3 B cell subset accumulates in the blood both in IgG4-related disease, an autoimmune disease in which inflammation and fibrosis can be reversed by B cell depletion, and in severe COVID-19. These DN3 B cells prominently accumulate in the end organs of IgG4-related disease and in lung lesions in COVID-19, and double-negative B cells prominently cluster with CD4+ T cells in these lesions. Extrafollicular DN3 B cells may participate in tissue inflammation and fibrosis in autoimmune fibrotic diseases, as well as in COVID-19.
Assuntos
Subpopulações de Linfócitos B , COVID-19 , Doença Relacionada a Imunoglobulina G4 , Humanos , Fibrose , Imunoglobulina D , Inflamação , Receptores CXCR5 , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologiaRESUMO
Immune mechanisms that modulate human immunodeficiency virus-1 (HIV-1) reservoir size in neonates are poorly understood. Using samples from neonates who initiated antiretroviral therapy shortly after birth, we demonstrate that interleukin-8-secreting CD4 T cells, which are selectively expanded in early infancy, are more resistant to HIV-1 infection and inversely correlated with the frequency of intact proviruses at birth. Moreover, newborns with HIV-1 infection displayed a distinct B-cell profile at birth, with reduction of memory B cells and expansion of plasmablasts and transitional B cells; however, B-cell immune perturbations were unrelated to HIV-1 reservoir size and normalized after initiation of antiretroviral therapy. Clinical Trials Registration. NCT02369406.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Recém-Nascido , Antirretrovirais/uso terapêutico , Provírus , Linfócitos T CD4-Positivos , Carga ViralRESUMO
Serological assays are important diagnostic tools for surveying exposure to the pathogen, monitoring immune response post vaccination, and managing spread of the infectious agent among the population. Current serological laboratory assays are often limited because they require the use of specialized laboratory technology and/or work with a limited number of sample types. Here, we evaluate an alternative by developing time-resolved Förster resonance energy transfer (TR-FRET) homogeneous assays that exhibited exceptional versatility, scalability, and sensitivity and outperformed or matched currently used strategies in terms of sensitivity, specificity, and precision. We validated the performance of the assays measuring total immunoglobulin G (IgG) levels; antibodies against severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle Eastern respiratory syndrome (MERS)-CoV spike (S) protein; and SARS-CoV-2 S and nucleocapsid (N) proteins and applied it to several large sample sets and real-world applications. We further established a TR-FRET-based ACE2-S competition assay to assess the neutralization propensity of the antibodies. Overall, these TR-FRET-based serological assays can be rapidly extended to other antigens and are compatible with commonly used plate readers.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Transferência Ressonante de Energia de Fluorescência , Anticorpos Antivirais , Nucleocapsídeo , Teste para COVID-19RESUMO
HIV post-treatment controllers (PTCs) are rare individuals who maintain low levels of viremia after stopping antiretroviral therapy (ART). Understanding the mechanisms of HIV post-treatment control will inform development of strategies aiming at achieving HIV functional cure. In this study, we evaluated 22 PTCs from 8 AIDS Clinical Trials Group (ACTG) analytical treatment interruption (ATI) studies who maintained viral loads ≤400 copies/mL for ≥24 wk. There were no significant differences in demographics or frequency of protective and susceptible human leukocyte antigen (HLA) alleles between PTCs and post-treatment noncontrollers (NCs, n = 37). Unlike NCs, PTCs demonstrated a stable HIV reservoir measured by cell-associated RNA (CA-RNA) and intact proviral DNA assay (IPDA) during analytical treatment interruption (ATI). Immunologically, PTCs demonstrated significantly lower CD4+ and CD8+ T cell activation, lower CD4+ T cell exhaustion, and more robust Gag-specific CD4+ T cell responses and natural killer (NK) cell responses. Sparse partial least squares discriminant analysis (sPLS-DA) identified a set of features enriched in PTCs, including a higher CD4+ T cell% and CD4+/CD8+ ratio, more functional NK cells, and a lower CD4+ T cell exhaustion level. These results provide insights into the key viral reservoir features and immunological profiles for HIV PTCs and have implications for future studies evaluating interventions to achieve an HIV functional cure.
Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Humanos , Células Matadoras Naturais , Ativação Linfocitária , RNA , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , ViremiaRESUMO
HIV-1 establishes a life-long reservoir of virally infected cells which cannot be eliminated by antiretroviral therapy (ART). Here, we demonstrate a markedly altered viral reservoir profile of long-term ART-treated individuals, characterized by large clones of intact proviruses preferentially integrated in heterochromatin locations, most prominently in centromeric satellite/micro-satellite DNA. Longitudinal evaluations suggested that this specific reservoir configuration results from selection processes that promote the persistence of intact proviruses in repressive chromatin positions, while proviruses in permissive chromosomal locations are more likely to be eliminated. A bias toward chromosomal integration sites in heterochromatin locations was also observed for intact proviruses in study participants who maintained viral control after discontinuation of antiretroviral therapy. Together, these results raise the possibility that antiviral selection mechanisms during long-term ART may induce an HIV-1 reservoir structure with features of deep latency and, possibly, more limited abilities to drive rebound viremia upon treatment interruptions.
Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Heterocromatina , Provírus/genética , Antivirais/uso terapêutico , Linfócitos T CD4-Positivos , Latência Viral , Carga Viral , Antirretrovirais/uso terapêuticoRESUMO
Identification of CD8+ T cell epitopes is critical for the development of immunotherapeutics. Existing methods for major histocompatibility complex class I (MHC class I) ligand discovery are time intensive, specialized and unable to interrogate specific proteins on a large scale. Here, we present EpiScan, which uses surface MHC class I levels as a readout for whether a genetically encoded peptide is an MHC class I ligand. Predetermined starting pools composed of >100,000 peptides can be designed using oligonucleotide synthesis, permitting large-scale MHC class I screening. We exploit this programmability of EpiScan to uncover an unappreciated role for cysteine that increases the number of predicted ligands by 9-21%, reveal affinity hierarchies by analysis of biased anchor peptide libraries and screen viral proteomes for MHC class I ligands. Using these data, we generate and iteratively refine peptide binding predictions to create EpiScan Predictor. EpiScan Predictor performs comparably to other state-of-the-art MHC class I peptide binding prediction algorithms without suffering from underrepresentation of cysteine-containing peptides. Thus, targeted immunopeptidomics using EpiScan will accelerate CD8+ T cell epitope discovery toward the goal of individual-specific immunotherapeutics.
Assuntos
Cisteína , Antígenos de Histocompatibilidade Classe I , Ligantes , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Epitopos de Linfócito T/genética , Ligação ProteicaRESUMO
Human immunodeficiency virus 1 (HIV-1) reservoir cells persist lifelong despite antiretroviral treatment1,2 but may be vulnerable to host immune responses that could be exploited in strategies to cure HIV-1. Here we used a single-cell, next-generation sequencing approach for the direct ex vivo phenotypic profiling of individual HIV-1-infected memory CD4+ T cells from peripheral blood and lymph nodes of people living with HIV-1 and receiving antiretroviral treatment for approximately 10 years. We demonstrate that in peripheral blood, cells harbouring genome-intact proviruses and large clones of virally infected cells frequently express ensemble signatures of surface markers conferring increased resistance to immune-mediated killing by cytotoxic T and natural killer cells, paired with elevated levels of expression of immune checkpoint markers likely to limit proviral gene transcription; this phenotypic profile might reduce HIV-1 reservoir cell exposure to and killing by cellular host immune responses. Viral reservoir cells harbouring intact HIV-1 from lymph nodes exhibited a phenotypic signature primarily characterized by upregulation of surface markers promoting cell survival, including CD44, CD28, CD127 and the IL-21 receptor. Together, these results suggest compartmentalized phenotypic signatures of immune selection in HIV-1 reservoir cells, implying that only small subsets of infected cells with optimal adaptation to their anatomical immune microenvironment are able to survive during long-term antiretroviral treatment. The identification of phenotypic markers distinguishing viral reservoir cells may inform future approaches for strategies to cure and eradicate HIV-1.
Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , HIV-1 , Fenótipo , Latência Viral , Humanos , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/imunologia , HIV-1/isolamento & purificação , Provírus/efeitos dos fármacos , Provírus/genética , Provírus/isolamento & purificação , Carga Viral , Latência Viral/efeitos dos fármacos , Memória Imunológica , Linfonodos/citologia , Linfonodos/imunologia , Sobrevivência Celular , Antígenos CD28 , Receptores de Interleucina-21RESUMO
BACKGROUND: The persistence of HIV-1-infected cells during antiretroviral therapy is well documented but may be modulated by early initiation of antiretroviral therapy in infants. METHODS: Here, we longitudinally analyzed the proviral landscape in nine infants with vertical HIV-1 infection from Mozambique over a median period of 24 months, using single-genome, near full-length, next-generation proviral sequencing. RESULTS: We observed a rapid decline in the frequency of intact proviruses, leading to a disproportional under-representation of intact HIV-1 sequences within the total number of HIV-1 DNA sequences after 12-24 months of therapy. In addition, proviral integration site profiling in one infant demonstrated clonal expansion of infected cells harboring intact proviruses and indicated that viral rebound was associated with an integration site profile dominated by intact proviruses integrated into genic and accessible chromatin locations. CONCLUSION: Together, these results permit rare insight into the evolution of the HIV-1 reservoir in infants infected with HIV-1 and suggest that the rapid decline of intact proviruses, relative to defective proviruses, may be attributed to a higher vulnerability of genome-intact proviruses to antiviral immunity. Technologies to analyze combinations of intact proviral sequences and corresponding integration sites permit a high-resolution analysis of HIV-1 reservoir cells after early antiretroviral treatment initiation in infants.