Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38247454

RESUMO

Coffee beans are a readily available, abundant source of antioxidants used worldwide. With the increasing interest in and consumption of coffee beverages globally, research into the production, preparation, and chemical profile of coffee has also increased in recent years. A wide range of variables such as roasting temperature, coffee grind size, brewing temperature, and brewing duration can have a significant impact on the extractable antioxidant content of coffee products. While there is no single standard method for measuring all of the antioxidants found in coffee, multiple methods which introduce the coffee product to a target molecule or reagent can be used to deduce the overall radical scavenging capacity. In this article, we profile the effect that many of these variables have on the quantifiable concentration of antioxidants found in both cold and hot brew coffee samples. Most protocols for cold brew coffee involve an immersion or steeping method where the coffee grounds are in contact with water at or below room temperature for several hours. Generally, a higher brewing temperature or longer brewing time yielded greater antioxidant activity. Most studies also found that a lower degree of coffee bean roast yielded greater antioxidant activity.

2.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014362

RESUMO

Nanotechnology has become increasingly important in modern society, and nanoparticles are routinely used in many areas of technology, industry, and commercial products. Many species of nanoparticle (NP) are typically synthesized using toxic or hazardous chemicals, making these methods less environmentally friendly. Consequently, there has been growing interest in green synthesis methods, which avoid unnecessary exposure to toxic chemicals and reduce harmful waste. Synthesis methods which utilize food waste products are particularly attractive because they add value and a secondary use for material which would otherwise be disposed of. Here, we show that spent coffee grounds (SCGs) that have already been used once in coffee brewing can be easily used to synthesize gold and silver NPs. SCGs derived from medium and dark roasts of the same bean source were acquired after brewing coffee by hot brew, cold brew, and espresso techniques. The total antioxidant activity (TAC) and total caffeoylquinic acid (CQA) of the aqueous SCG extracts were investigated, showing that hot brew SCGs had the highest CQA and TAC levels, while espresso SCGs had the lowest. SCG extract proved effective as a reducing agent in synthesizing gold and silver NPs regardless of roast or initial brew method.


Assuntos
Coffea , Nanopartículas Metálicas , Eliminação de Resíduos , Antioxidantes/análise , Café , Ouro , Extratos Vegetais , Sementes/química , Prata
3.
Nanotechnology ; 27(38): 385601, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27518385

RESUMO

This project aims to provide an insight on the effects of biocompatible polymers on the optical properties and the nanoparticle-cell interaction of KYb2F7:Tm(3+) nanocrystals that exhibit strong near infrared (NIR) fluorescence. KYb2F7:Tm(3+) nanocrystals were synthesized with a diameter of 20-30 nm and surface modified with poly(ethylene glycol), Pluronic(®) F-127, and poly(N-vinylpyrrolidone), due to the associated advantages. Some of these include biocompatibility and biodistribution in the instance of agglomeration and hydrophobicity as well as the addition of a targeting agent and drug loading by further functionalization. Despite the decrease in fluorescence intensity induced by the surface modification, thulium's emission fingerprint was easily detected. Moreover, surface modified KYb2F7:Tm(3+) nanocrystals failed to induce a toxic response on endothelial cells following a 24 h uptake period up to concentrations of 100 µg ml(-1). In vitro toxicity and confocal imaging have demonstrated the versatility of these NIR fluorescence nanocrystals in biomedical imaging, drug delivery, and photodynamic therapy.


Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos , Polietilenoglicóis , Propriedades de Superfície , Túlio , Distribuição Tecidual
4.
ACS Appl Mater Interfaces ; 7(38): 21465-71, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26322519

RESUMO

Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance.


Assuntos
Diagnóstico por Imagem/métodos , Luminescência , Fenômenos Magnéticos , Animais , Galinhas , Feminino , Imageamento Tridimensional , Glândulas Mamárias Animais/anatomia & histologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Difração de Raios X
5.
J Mater Chem B ; 1(41): 5702-5710, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25584192

RESUMO

Here we report the synthesis, characterization and application of a multifunctional surface functionalized GdF3:Nd3+ nanophosphor that exhibits efficient near infrared (NIR) fluorescence as well as magnetic properties, which can be utilized for bimodal imaging in medical applications. The nanoparticles are small with an average size of 5 nm and form stable colloids that last for several weeks without settling, enabling the use for several biomedical and photonic applications. Their excellent NIR properties, such as nearly 11 % quantum yield of the 1064 nm emission, make them ideal contrast agents and biomarkers for in vitro and in vivo NIR optical bioimaging. The nanophosphors which were coated with poly(maleic anhydride- alt-1-octadicene) (PMAO) were implemented in cellular imaging and show no significant cellular toxicity for concentrations up to 200 µg ml-1. Furthermore, the incorporation of Gd into the nanocrystalline structure supplies exceptional magnetic properties, making them ideal for use as magnetic resonance imaging (MRI) contrast agents. The utility of these NIR emitting nanoparticles in infrared bioimaging and as contrast agent in magnetic resonance imaging was demonstrated by confocal imaging, magnetic resonance and tissue experiments.

6.
Proc SPIE Int Soc Opt Eng ; 85942013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25429335

RESUMO

Nanoparticles doped with rare earth ions for biomedical imaging and infrared photodynamic therapy (IRPDT) have been synthesized, characterized, and compared. Specifically, these nanoparticles utilize two primary modalities: near infrared excitation and emission for imaging, and near infrared upconversion for photodynamic therapy. These nanoparticles are optimized for both their infrared emission and upconversion energy transfer to a photoactive agent conjugated to the surface. Finally, these nanoparticles are tested for toxicity, imaged in cells using the near infrared emission pathway, and used for selective killing of cells through the upconversion driven IRPDT.

7.
Opt Express ; 20(24): 26511-20, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187506

RESUMO

Barium titanate (BaTiO3) is a technologically important material because of its nonlinear properties, such as its strong second harmonic generation and high third order susceptibility. While many nonlinear effects have been extensively studied on the bulk scale, there are still questions regarding the strength of nonlinear effects in nanoparticles. The nonlinear properties of BaTiO3 nanoparticles and nanorods have been studied using the closed aperture z-scan technique. Silver was then grown photochemically on the surface of the BaTiO3 nanoparticles, and it was found that the third order susceptibility increases dramatically.


Assuntos
Simulação por Computador , Luz , Nanopartículas/química , Espalhamento de Radiação , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação , Humanos , Dinâmica não Linear
8.
Lasers Med Sci ; 27(2): 413-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21556925

RESUMO

The optical properties of bovine ocular tissues have been determined at laser wavelengths in the near-infrared (NIR) region. The inverse adding doubling (IAD), Kubelka-Munk (KM), and inverse Monte Carlo (IMC) methods were applied to the measured values of the total diffuse transmission, total diffuse reflection, and collimated transmission to determine the optical absorption and scattering coefficients of the bovine cornea, lens and retina from 750 to 1,000 nm using a CW Ti:sapphire laser. The optical properties obtained from these three methods have been compared and are discussed.


Assuntos
Córnea/química , Cristalino/química , Refratometria/métodos , Retina/química , Espalhamento de Radiação , Absorção , Animais , Bovinos , Lasers , Luz , Espectrofotometria Infravermelho
9.
Proc SPIE Int Soc Opt Eng ; 75622010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25419446

RESUMO

The near-infrared (NIR) optical properties of human retinal pigmented epithelial (RPE) cells and rare earth nanopowders were studied using a double-integrating sphere setup. The Kubelka-Munk and Inverse Adding-Doubling techniques were applied to obtain absorption and scattering coefficients. These are compared with the coefficients obtained through the Representative Layer Theory described by the Dahm equation. Retinal pigmented epithelial monolayers were cultured from an ARPE19 line in thin cell culture windows, and the nanopowders were pressed into samples of varying thickness. Samples were optically characterized as a function of wavelength. A brief discussion of the shortcomings of existing techniques for computing optical properties when applied to physically thin samples is provided, followed by a comparison between the optical properties of the samples returned by the different techniques.

10.
Lasers Med Sci ; 24(6): 839-47, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19495828

RESUMO

Optical properties of bovine ocular tissues were determined at laser wavelengths in the visible region. The inverse adding doubling (IAD), Kubelka-Munk (KM), and inverse Monte Carlo (IMC) methods were applied to the measured values of the total diffuse transmission, total diffuse reflection, and collimated transmission to determine the optical absorption and scattering coefficients of the bovine cornea, lens and retina at 457.9 nm, 488 nm, and 514.5 nm laser lines from an argon ion laser. The optical properties obtained from these three methods were compared, and their validity is discussed.


Assuntos
Córnea/fisiologia , Córnea/efeitos da radiação , Cristalino/fisiologia , Cristalino/efeitos da radiação , Retina/fisiologia , Retina/efeitos da radiação , Animais , Bovinos , Técnicas In Vitro , Lasers , Modelos Biológicos , Método de Monte Carlo , Fenômenos Ópticos , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA