Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 8(19): 4048-4056, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187880

RESUMO

The use of polyADPribose polymerase inhibitors in cancer treatment provides a unique opportunity to target DNA repair processes in cancer cells while leaving normal tissue intact. The PARP-1 enzyme repairs DNA single strand breaks (SSB). Therefore PARP-1 inhibition in BRCA1 negative cancers results in the formation of cytotoxic DNA double strand breaks (DSB) causing synthetic lethality. The use of PARP1 inhibitors is gaining momentum in the treatment of a variety of tumours with BRCA1 involvement including breast, ovarian, pancreatic and prostate cancer. Our previous work showed that the PARP-1 inhibitor Olaparib causes both hypersensitivity of BRCA1+/- cells following exposure to gamma radiation due to the persistence of DNA strand breaks in cells, measured by the DNA damage biomarker γ-H2AX. Therefore dual treatment of cancers with radiotherapy and PARP1 inhibition may lead to cases of increased normal tissue toxicity in cancer patients. In this study we exposed two normal lymphoblastoid cell lines and three heterozygous BRCA1 lymphoblastoid cell lines to the PARP-1 inhibitor Olaparib and gamma radiation and after measured BRCA1 protein expression and apoptosis levels following treatment. BRCA1 protein foci analysis was performed on cells exposed to 2 Gy radiation in the presence or absence of 5 µM Olaparib. Using immunofluorescence and imaging flow cytometry, foci were measured in untreated cells and at 0.5, 3, 5 and 24 hours post-irradiation. Exposing normal and BRCA1+/- cells to Olaparib followed by gamma radiation results in a dramatic change in BRCA1 protein foci expression, with a significant reduction in BRCA1 protein expression observed in the heterozygote cells, together with an increase in apoptosis levels in these cells. In conclusion, combining PARP1 inhibitors with radiotherapy in treating of BRCA1-related cancers has clinical relevance, however this study and our previous publications serve to highlight the potential problems of increased side effects in these scenarios.

2.
Cytometry A ; 81(2): 130-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22170789

RESUMO

The measurement of γ-H2AX foci induction in cells provides a sensitive and reliable method for the quantitation of DNA damage responses in a variety of cell types. Accurate and rapid methods to conduct such observations are desirable. In this study, we have employed the novel technique of multispectral imaging flow cytometry to compare the induction and repair of γ-H2AX foci in three human cell types with different capacities for the repair of DNA double strand breaks (DSB). A repair normal fibroblast cell line MRC5-SV1, a DSB repair defective ataxia telangiectasia (AT5BIVA) cell line, and a DNA-PKcs deficient cell line XP14BRneo17 were exposed to 2 Gy gamma radiation from a (60)Cobalt source. Thirty minutes following exposure, we observed a dramatic induction of foci in the nuclei of these cells. After 24 hrs, there was a predictable reduction on the number of foci in the MRC5-SV1 cells, consistent with the repair of DNA DSB. In the AT5BIVA cells, persistence of the foci over a 24-hr period was due to the failure in the repair of DNA DSB. However, in the DNA-PKcs defective cells (XP14BRneo17), we observed an intermediate retention of foci in the nuclei indicative of partial repair of DNA DSB. In summary, the application of imaging flow cytometry has permitted an evaluation of foci in a large number of cells (20,000) for each cell line at each time point. This provides a novel method to determine differences in repair kinetics between different cell types. We propose that imaging flow cytometry provides an alternative platform for accurate automated high through-put analysis of foci induction in a variety of cell types.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Citometria de Fluxo/métodos , Histonas/metabolismo , Citometria por Imagem/métodos , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Fluorescência , Raios gama , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA