Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(5): 479, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595754

RESUMO

Circular RNAs (circRNAs) are critical regulators in the occurrence and development of numerous cancers, in which abnormal autophagy plays a key role. However, the potential involvement of circRNAs in autophagy is largely unknown. Here, we identified the overexpression of circTICRR, a circular RNA, in cervical cancer. In vitro experiments showed that knockdown of circTICRR activated autophagy, and consequently promoted apoptosis and inhibited proliferation in cervical cancer cells, and vice versa. CircTICRR interacted with HuR protein via binding to F287/F289 in the RRM3 domain of HuR, stabilizing GLUD1 mRNA and elevating the level of GLUD1 protein. In vivo experiments revealed that knockdown of circTICRR suppressed the growth of transplanted tumors. An inhibitory peptide specific to the binding site between circTICRR and HuR protein promoted autophagy, induced apoptosis, suppressed proliferation in cervical cancer cells, and inhibited the growth of xenografts. Our findings suggest that circTICRR acts as an oncogene in cervical cancer and the interaction between circTICRR and HuR protein may be a potential target in cervical cancer therapeutics.


Assuntos
Autofagia , Proteína Semelhante a ELAV 1 , Glutamato Desidrogenase , RNA Circular , Neoplasias do Colo do Útero , Autofagia/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Feminino , Glutamato Desidrogenase/metabolismo , Humanos , Oncogenes , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
2.
Mol Ther Nucleic Acids ; 27: 227-240, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34976440

RESUMO

Metastasis is the main cause of cervical cancer lethality, but to date, no effective treatment has been developed to block metastasis. Circular RNAs (circRNAs) were recently found to be involved in cancer metastasis. In this study, we identified a downregulated circRNA derived from the host gene Gli1 (hsa_circ_0005358) in cervical cancer tissues, which was expressed at lower levels in tissues with extracervical metastasis than in those without extracervical metastasis. Upregulation of hsa_circ_0005358 significantly suppressed the migration and invasion of cervical cancer cells in vitro, and downregulation of hsa_circ_0005358 had the opposite effect. A mouse model revealed that cervical cancer cells overexpressing hsa_circ_0005358 possessed weaker metastatic potential in vivo. RNA-pull-down assay, mass spectrometry, and RNA immunoprecipitation validated the findings that hsa_circ_0005358 functions via its 215-224 sequence, which interacts with polypyrimidine tract-binding protein 1 (PTBP1). RNA-sequencing profiling revealed that CUB-domain-containing protein 1 (CDCP1) is a common target for hsa_circ_0005358 and PTBP1. We further confirmed that hsa_circ_0005358 sequestered PTBP1, preventing it from stabilizing CDCP1 mRNA, reducing CDCP1 protein translation and ultimately suppressing cancer metastasis. Our findings reveal the function of hsa_circ_0005358 in tumor metastasis, which may be applied to a potential therapeutic approach for patients with metastatic cervical cancer.

3.
Front Pharmacol ; 13: 1014933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703740

RESUMO

Background: Patients with late-stage ovarian cancer still have a very poor prognosis due to chemotherapy resistance. Curcumin has been shown to synergistically enhance the therapeutic effects of multiple chemotherapeutic agents, but the potential involvement of curcumin in ovarian cancer is largely unknown. This study aimed to investigate whether curcumin has synergistic anti-cancer effects with paclitaxel in ovarian cancer and its underlying mechanism. Methods: Ovarian cancer cell lines (SKOV3 and A2780) were treated with curcumin, alone or combined with paclitaxel. Cell viability, colony formation, EdU incorporation assays, and flow cytometry were used to assess cell proliferation, apoptosis, and cell cycle progression. The cytotoxic synergistic effect of curcumin and paclitaxel was detected by Calcusyn software. RNA immunoprecipitation assay was used to verify the interaction between miR-9-5p and BRCA1. qRT-PCR and Western blot were performed to detect gene and protein expression. Results: We found that curcumin and paclitaxel synergistically inhibited proliferation and promoted apoptosis in ovarian cancer cells. Furthermore, curcumin and paclitaxel combination resulted in decreased miR-9-5p expression and increased BRCA1 expression. Functionally, miR-9-5p overexpression counteracted the synergistic effect of curcumin and paclitaxel on cell proliferation and apoptosis by targeting BRCA1. Meanwhile, in vivo experiments revealed that curcumin and paclitaxel combination dramatically suppressed the growth of transplanted tumors, while miR-9-5p mimics eliminated the growth inhibition of xenografts induced by the combined treatment. Conclusion: Curcumin enhanced the anti-cancer efficacy of paclitaxel in ovarian cancer by regulating the miR-9-5p/BRCA1 axis. These findings provide strong evidence for clinical investigation of curcumin and paclitaxel combination as a novel strategy for ovarian cancer patients, and identify miR-9-5p and BRCA1 as key targets for regulating sensitivity to this therapy.

4.
Clin Transl Med ; 11(5): e425, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34047469

RESUMO

INTRODUCTION: Exosomal microRNA (miRNA) as a mediator of intercellular communication plays an essential part in tumor-relevant angiogenesis. Therapy against angiogenesis has been demonstrated to have a remarkable antitumor efficacy in various malignancies, but not as expected in ovarian cancer. METHODS: Exosomes were isolated by ultracentrifugation. Exosomal miRNA sequencing and gene function experiments were used to identify the differential expressed miRNAs in exosomes and their mRNA targets. SKOV3 cell line that stably overexpressed miR-92b-3p was constructed by lentivirus. In vitro, angiogenesis was analyzed by tube formation assay and migration assay. The angiogenic and antitumor effects in vivo were assessed in zebrafish and nude mouse models. Combination index was calculated to assess the synergetic inhibition of angiogenesis between miR-92b-3p and Apatinib. Peptides were conjugated with exosomal membranes to obtain engineered exosomes. RESULTS: Ovarian cancer cell-derived exosomes facilitated the angiogenesis and migration capability of vascular endothelial cells in vitro and in vivo. The expression of miR-92b-3p was much lower in ovarian cancer cell-derived exosomes than that in immortalized ovarian epithelial cell-derived exosomes. The exosomal miR-92b-3p modulated tumor-associated angiogenesis via targeting SOX4. Besides, Peptide-engineered exosomes with overexpressed miR-92b-3p showed the stronger abilities of anti-angiogenesis and antitumor than parental exosomes, whether alone or combined with Apatinib. CONCLUSIONS: Our findings demonstrate the effect and mechanism of exosomal miR-92b-3p from ovarian cancer cells on tumor-associated angiogenesis and the potential of artificially generated exosomes with overexpressed miR-92b-3p to be used as anti-angiogenic agent, which may provide a new approach for anti-angiogenic therapy of ovarian cancer.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Exossomos/metabolismo , MicroRNAs/genética , Neovascularização Patológica/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Peptídeos/metabolismo , Engenharia de Proteínas , Animais , Linhagem Celular Tumoral , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Piridinas/uso terapêutico , Fatores de Transcrição SOXC/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
5.
J Exp Clin Cancer Res ; 39(1): 281, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308298

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been reported to play key roles in the development of various cancers. However, the biological functions and clinical significance of most circRNAs are still elusive. The purpose of this study was to explore the function and mechanism of a certain circRNA named circCDKN2B-AS1 in cervical cancer development and its potential value in the clinic. METHODS: qRT-PCR was used to verify the expression level of circCDKN2B-AS1. CCK-8, Transwell, and flow cytometry (FCM) assays were performed to detect cellular proliferation, migration, and apoptosis, respectively. A Seahorse XFe96 Analyzer was used to measure glycolysis metabolism level. RNA pull-down, RNA immunoprecipitation (RIP), actinomycin-D addition assays and Western blotting were used to screen and elucidate the potential mechanisms involved. BALB/c nude mice and zebrafish embryos (AB, WT) were used as animal models to investigate tumorigenesis capability. 18FDG-microPET/CT imaging and lactic acid (LA) and pyruvic acid (PA) content detection assays were used to detect the level of glucose metabolism in subcutaneous tumors from nude mice. RESULTS: CircCDKN2B-AS1, a circular isoform of the long noncoding RNA (lncRNA) CDKN2B-AS1, was upregulated in cervical cancer and precancerous tissues. We found that circCDKN2B-AS1 associated with the IMP3 protein depending on a specific binding site and regulated the stability of Hexokinase 2 (HK2) mRNA, the rate-limiting enzyme of the aerobic glycolysis pathway. The expression level of circCDKN2B-AS1 fated the binding of IMP3 to the 3' untranslated region (UTR) of HK2 mRNA, consequently affecting the malignant cell phenotype and aerobic glycolysis in cervical cancer in vitro and in vivo. Mutant circCDKN2B-AS1, lacking the IMP3 binding site, did not have such effects. Utilization of an inhibitory peptide to block the interaction between circCDKN2B-AS1 and the IMP3 protein impeded the binding of IMP3 to the 3'UTR of HK2 mRNA and suppressed aerobic glycolysis in cervical cancer cells. CONCLUSIONS: Our findings demonstrate that circCDKN2B-AS1 facilitates aerobic glycolysis by sponging the IMP3 protein to stabilize HK2 mRNA, consequently promoting the malignant phenotype in cervical cancer, which may provide a potential approach for cervical cancer therapeutics.


Assuntos
Glicólise , Hexoquinase/metabolismo , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Neoplasias do Colo do Útero/patologia , Adulto , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Hexoquinase/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , RNA Mensageiro/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Rep ; 6: 21133, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26878911

RESUMO

Silica nanoparticles (SiO2 NPs) cause oxidative stress in respiratory system. Meanwhile, human cells launch adaptive responses to overcome SiO2 NP toxicity. However, besides a few examples, the regulation of SiO2 NP-responsive proteins and their functions in SiO2 NP response remain largely unknown. In this study, we demonstrated that SiO2 NP induced the expression of follistatin (FST), a stress responsive gene, in mouse lung tissue as well as in human lung epithelial cells (A549). The levels of Ac-H3(K9/18) and H3K4me2, two active gene markers, at FST promoter region were significantly increased during SiO2 NP treatment. The induction of FST transcription was mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2), as evidenced by the decreased FST expression in Nrf2-deficient cells and the direct binding of Nrf2 to FST promoter region. Down-regulation of FST promoted SiO2 NP-induced apoptosis both in cultured cells and in mouse lung tissue. Furthermore, knockdown of FST increased while overexpression of FST decreased the expression level of NADPH oxidase 1 (NOX1) and NOX5 as well as the production of cellular reactive oxygen species (ROS). Taken together, these findings demonstrated a protective role of FST in SiO2 NP-induced oxidative stress and shed light on the interaction between SiO2 NPs and biological systems.


Assuntos
Células Epiteliais Alveolares/metabolismo , Folistatina/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nanopartículas , Estresse Oxidativo , Dióxido de Silício , Ativação Transcricional , Animais , Apoptose/genética , Linhagem Celular , Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , NADPH Oxidase 1 , NADPH Oxidase 5 , NADPH Oxidases/genética , Nanopartículas/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA