Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Front Cell Neurosci ; 18: 1352630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572075

RESUMO

Introduction: Spinal cord injury (SCI) is a severely disabling disease. Hyperactivation of neuroinflammation is one of the main pathophysiological features of secondary SCI, with phospholipid metabolism playing an important role in regulating inflammation. Phospholipase D (PLD), a critical lipid-signaling molecule, is known to be involved in various physiological processes, including the regulation of inflammation. Despite this knowledge, the specific role of PLD in SCI remains unclear. Methods: In this study, we constructed mouse models of SCI and administered PLD inhibitor (FIPI) treatment to investigate the efficacy of PLD. Additionally, transcriptome sequencing and protein microarray analysis of spinal cord tissues were conducted to further elucidate its mechanism of action. Results: The results showed that PLD expression increased after SCI, and inhibition of PLD significantly improved the locomotor ability, reduced glial scarring, and decreased the damage of spinal cord tissues in mice with SCI. Transcriptome sequencing analysis showed that inhibition of PLD altered gene expression in inflammation regulation. Subsequently, the protein microarray analysis of spinal cord tissues revealed variations in numerous inflammatory factors. Biosignature analysis pointed to an association with immunity, thus confirming the results obtained from transcriptome sequencing. Discussion: Collectively, these observations furnish compelling evidence supporting the anti-inflammatory effect of FIPI in the context of SCI, while also offering important insights into the PLD function which may be a potential therapeutic target for SCI.

2.
In Vivo ; 38(2): 699-709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418134

RESUMO

BACKGROUND/AIM: Evidence suggests that gut microbiota can affect various neurological diseases, including stroke. Stroke patients have an increase in harmful gut bacteria and a decrease in beneficial bacteria. This increases intestinal permeability, increases the risk of infection, and even affects many inflammatory factors. While probiotics may affect stroke prognosis by improving the gut environment. This study aimed to investigate the effect of probiotic Bifico on the neural function in mice after focal cerebral ischemia and explore its mechanisms of action. MATERIALS AND METHODS: A focal cerebral ischemia model was established in mice. Four weeks before modeling, animals were divided into three groups: Stroke plus Vehicle group, Stroke plus Pre-Bifico group and Bifico group. The infarct volume and neurobehaviors were evaluated. Whole-gene expression profiling was performed at different days after treatment (D1, D7, D14, D28) by RNA-seq. Differentially expressed genes (DEGs) were the processed for Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG). Some inflammation and immune related genes were screened and their expression was analyzed. RESULTS: Compared to the Stroke plus Vehicle group and Bifico group, the infarct volume and neurological score were significantly reduced in the Pre-Bifico group. There were 2 DEGs at D1, 193 DEGs at D7, 70 DEGs at D28 between Stroke plus Pre-Bifico group and Stroke plus Vehicle group. For GO analysis, there were 139 significant terms at D7 and 195 at D28. For KEGG, there were 2 significant pathways at D7 and 9 at D28. Among 87 genes related to inflammation and immunity, 6 DEGs were identified. The expression of CCL9 was significantly elevated at most time points after stroke compared to the Stroke plus Vehicle group, while that of CCL6, CXCL10, CD48, CD72 and CLEC7A was highly expressed only in the recovery stage of stroke. CONCLUSION: Oral pre-treatment with Bifico for 28 days can reduce cerebral infarction and promote recovery of neurological function in stroke mice, which may be ascribed to the regulation of immunity and inflammation in the brain.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Perfilação da Expressão Gênica , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Inflamação/genética , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Infarto , Transcriptoma
3.
AMB Express ; 14(1): 8, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245573

RESUMO

The industrial applications of the κ-carrageenases have been restricted by their poor thermostability. In this study, based on the folding free energy change (ΔΔG) and the flexibility analysis using molecular dynamics (MD) simulation for the alkaline κ-carrageenase KCgCD from Pseudoalteromonas porphyrae (WT), the mutant S190R was identified with improved thermostability. After incubation at 50 °C for 30 min, the residual activity of S190R was 63.7%, 25.7% higher than that of WT. The Tm values determined by differential scanning calorimetry were 66.2 °C and 64.4 °C for S190R and WT, respectively. The optimal temperature of S190R was 10 °C higher than that of WT. The κ-carrageenan hydrolysates produced by S190R showed higher xanthine oxidase inhibitory activity compared with the untreated κ-carrageenan. MD simulation analysis of S190R showed that the residues (V186-M194 and P196-G197) in F5 and the key residue R150 in F3 displayed the decreased flexibility, and residues of T169-N173 near the catalytic center displayed the increased flexibility. These changed flexibilities might be the reasons for the improved thermostability of mutant S190R. This study provides a useful rational design strategy of combination of ΔΔG calculation and MD simulation to improve the κ-carrageenase's thermostability for its better industrial applications.

4.
Appl Microbiol Biotechnol ; 108(1): 15, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170310

RESUMO

Fungal infection has become a major threat to crop loss and affects food safety. The waste water from agar processing industries extraction has a number of active substances, which could be further transformed by microorganisms to synthesize antifungal active substances. In this study, Bacillus subtilis was used to ferment the waste water from agar processing industries extraction to analyze the antifungal activity of the fermentation broth on Alternaria alternata and Alternaria spp. Results showed that 25% of the fermentation broth was the most effective in inhibited A. alternata and Alternaria spp., with fungal inhibition rates of 99.9% and 96.1%, respectively, and a minimum inhibitory concentration (MIC) was 0.156 µg/mL. Metabolomic analysis showed that flavonoid polyphenols such as coniferyl aldehyde, glycycoumarin, glycitin, and procyanidin A1 may enhance the inhibitory activity against the two pathogenic fungal strains. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that polyphenols involved in the biosynthesis pathways of isoflavonoid and phenylpropanoid were upregulated after fermentation. The laser confocal microscopy analyses and cell conductivity showed that the cytoplasm of fungi treated with fermentation broth was destroyed. This study provides a research basis for the development of new natural antifungal agents and rational use of seaweed agar waste. KEY POINTS: • Bacillus subtilis fermented waste water has antifungal activity • Bacillus subtilis could transform active substances in waste water • Waste water is a potential raw material for producing antifungal agents.


Assuntos
Antifúngicos , Bacillus subtilis , Bacillus subtilis/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Ágar , Águas Residuárias , Fermentação , Alternaria
5.
Nucleic Acids Res ; 52(D1): D285-D292, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897340

RESUMO

Chromatin accessibility profiles at single cell resolution can reveal cell type-specific regulatory programs, help dissect highly specialized cell functions and trace cell origin and evolution. Accurate cell type assignment is critical for effectively gaining biological and pathological insights, but is difficult in scATAC-seq. Hence, by extensively reviewing the literature, we designed scATAC-Ref (https://bio.liclab.net/scATAC-Ref/), a manually curated scATAC-seq database aimed at providing a comprehensive, high-quality source of chromatin accessibility profiles with known cell labels across broad cell types. Currently, scATAC-Ref comprises 1 694 372 cells with known cell labels, across various biological conditions, >400 cell/tissue types and five species. We used uniform system environment and software parameters to perform comprehensive downstream analysis on these chromatin accessibility profiles with known labels, including gene activity score, TF enrichment score, differential chromatin accessibility regions, pathway/GO term enrichment analysis and co-accessibility interactions. The scATAC-Ref also provided a user-friendly interface to query, browse and visualize cell types of interest, thereby providing a valuable resource for exploring epigenetic regulation in different tissues and cell types.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Bases de Dados Genéticas , Análise de Célula Única , Cromatina/genética , Epigênese Genética , Humanos , Animais
6.
Int J Biol Macromol ; 252: 126401, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597638

RESUMO

κ-Carrageenase can degrade κ-carrageenan to produce bioactive κ-carrageenan oligosaccharides (KCOs) that have potential applications in pharmaceutical, food, agricultural, and cosmetics industries. Immobilized enzymes gain their popularity due to their good reusability, enhanced stability, and tunability. In this study, the previously characterized catalytic domain of Pseudoalteromonas purpurea κ-carrageenase was covalently immobilized on the synthesized amine-modified zeolitic imidazolate framework-8 nanoparticles with the formation of cross-linked enzyme aggregates, and the immobilized κ-carrageenase was further characterized. The immobilized κ-carrageenase demonstrated excellent pH stability and good reusability, and exhibited higher optimal reaction temperature, better thermostability, and extended storage stability compared with the free enzyme. The KCOs produced by the immobilized κ-carrageenase could significantly decrease the TC, TG, and LDL-C levels in HepG2 cells, increase the HDL-C level in HepG2 cells, and reduce the free fatty acids level in Caco-2 cells. Biochemical assays showed that the KCOs could activate AMPK activity, increase the ratios of p-AMPK/AMPK and p-ACC/ACC, and downregulate the expression of the lipid metabolism related proteins including SREBP1 and HMGCR in the hyperlipidemic HepG2 cells. This study provides a novel and effective method for immobilization of κ-carrageenase, and the KCOs produced by the immobilized enzyme could be a potential therapeutic agent to prevent hyperlipidemia.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas de Bactérias , Humanos , Carragenina/química , Células CACO-2 , Células Hep G2 , Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Enzimas Imobilizadas
7.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37580133

RESUMO

Astaxanthin has high utilization value in functional food because of its strong antioxidant capacity. However, the astaxanthin content of Phaffia rhodozyma is relatively low. Adaptive laboratory evolution is an excellent method to obtain high-yield strains. TiO2 is a good inducer of oxidative stress. In this study, different concentrations of TiO2 were used to domesticate P. rhodozyma, and at a concentration of 1000 mg/L of TiO2 for 105 days, the optimal strain JMU-ALE105 for astaxanthin production was obtained. After fermentation, the astaxanthin content reached 6.50 mg/g, which was 41.61% higher than that of the original strain. The ALE105 strain was fermented by batch and fed-batch, and the astaxanthin content reached 6.81 mg/g. Transcriptomics analysis showed that the astaxanthin synthesis pathway, and fatty acid, pyruvate, and nitrogen metabolism pathway of the ALE105 strain were significantly upregulated. Based on the nitrogen metabolism pathway, the nitrogen source was adjusted by ammonium sulphate fed-batch fermentation, which increased the astaxanthin content, reaching 8.36 mg/g. This study provides a technical basis and theoretical research for promoting industrialization of astaxanthin production of P. rhodozyma. ONE-SENTENCE SUMMARY: A high-yield astaxanthin strain (ALE105) was obtained through TiO2 domestication, and its metabolic mechanism was analysed by transcriptomics, which combined with nitrogen source regulation to further improve astaxanthin yield.


Assuntos
Xantofilas , Evolução Molecular Direcionada , Perfilação da Expressão Gênica , Basidiomycota/química , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Biomassa , Glucose/análise , Carotenoides/análise , Fermentação , Técnicas de Cultura Celular por Lotes , Nitrogênio/metabolismo , Xantofilas/química , Xantofilas/metabolismo
8.
Nat Commun ; 14(1): 4803, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558697

RESUMO

The layer stacking order in 2D materials strongly affects functional properties and holds promise for next-generation electronic devices. In bulk, octahedral MoTe2 possesses two stacking arrangements, the ferroelectric Weyl semimetal Td phase and the higher-order topological insulator 1T' phase. However, in thin flakes of MoTe2, it is unclear if the layer stacking follows the Td, 1T', or an alternative stacking sequence. Here, we use atomic-resolution scanning transmission electron microscopy to directly visualize the MoTe2 layer stacking. In thin flakes, we observe highly disordered stacking, with nanoscale 1T' and Td domains, as well as alternative stacking arrangements not found in the bulk. We attribute these findings to intrinsic confinement effects on the MoTe2 stacking-dependent free energy. Our results are important for the understanding of exotic physics displayed in MoTe2 flakes. More broadly, this work suggests c-axis confinement as a method to influence layer stacking in other 2D materials.

9.
Neurosurg Rev ; 46(1): 213, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644159

RESUMO

The purpose of the study is to explore the underlying mechanisms of xenon (Xe) which protects against spinal cord ischemia/reperfusion injury (SCIRI). A SCIRI rat model was induced by abdominal artery occlusion for 85 min and reperfusion. Xe postconditioning (50% Xe) was administered 1 h after 1 h of reperfusion. At reperfusion time points (2, 4, 6, and 24 h), rats were treated with spinal cord scans by MRI to assess the time of peak spinal cord injury after SCIRI. Subsequently, endoplasmic reticulum (ER) stress inhibitor sodium 4-phenylbutyrate (4-PBA) was administered by daily intraperitoneal injection (50 mg/kg) for 5 days before SCIRI. At 4 h after reperfusion, motor function, immunofluorescence staining, hematoxylin and eosin (HE) staining, Nissl staining, TUNEL staining, real-time reverse transcription polymerase chain (RT-PCR) reaction, and western blot analyses were performed to investigate the protective effects of Xe against SCIRI. In the rat I/R model, spinal cord edema peaked at reperfusion 4 h. SCIRI activated ER stress, which was located in neurons. Xe postconditioning remarkably alleviated hind limb motor function, reduced neuronal apoptosis rate, increased the number of normal neurons, and inhibited the expression of ER stress-related protein in spinal cord. Furthermore, the administration of the ER stress inhibitor 4-PBA strongly decreased ER stress-induced apoptosis following SCIRI. Xe postconditioning inhibits ER stress activation, which contributes to alleviate SCIRI by suppressing neuronal apoptosis.


Assuntos
Traumatismo por Reperfusão , Isquemia do Cordão Espinal , Humanos , Animais , Ratos , Isquemia do Cordão Espinal/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Apoptose , Estresse do Retículo Endoplasmático
10.
Brain Sci ; 13(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37190515

RESUMO

Overactive microglia and severe neuroinflammation play crucial roles in the development of major depressive disorder. Preconditioning with lipopolysaccharide (LPS) provides protection against severe neuroinflammation. However, administering high doses of LPS to mice triggers depressive symptoms. Therefore, the optimal dose of LPS preconditioning needs to be determined by further experiments. LPS preconditioning is an effective agent in anti-inflammation and neuroprotection, but the mechanism by which LPS preconditioning acts in depression remain unclear. This study finds that the anti-inflammation mechanism of low-dose LPS preconditioning is mainly dependent on G-protein-coupled receptor 84 (GPR84). We use low-dose LPS for preconditioning and re-challenged mice or BV2 microglia with high-dose LPS. In addition, RNA-seq is used to explore underlying changes with LPS preconditioning. Low-dose LPS preconditioning reduces the expression of pro-inflammatory mediators and inhibits microglial activation, as well as suppresses the depressive-like behavior when the mice are re-challenged with high-dose LPS. Further investigation reveals that the tolerance-like response in microglia is dependent on the GPR84. Here, we show that low-dose LPS preconditioning can exert anti-inflammation effects and alleviates inflammation-induced depressive-like behavior in mice. As a potential therapeutic target for depression, LPS preconditioning needs to be given further attention regarding its effectiveness and safety.

11.
JHEP Rep ; 5(6): 100726, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138676

RESUMO

Background & Aims: Phospholipase D1 (PLD1), a phosphatidylcholine-hydrolysing enzyme, is involved in cellular lipid metabolism. However, its involvement in hepatocyte lipid metabolism and consequently non-alcoholic fatty liver disease (NAFLD) has not been explicitly explored. Methods: NAFLD was induced in hepatocyte-specific Pld1 knockout (Pld1(H)-KO) and littermate Pld1 flox/flox (Pld1-Flox) control mice feeding a high-fat diet (HFD) for 20 wk. Changes of the lipid composition in the liver were compared. Alpha mouse liver 12 (AML12) cells and mouse primary hepatocytes were incubated with oleic acid or sodium palmitate in vitro to explore the role of PLD1 in the development of hepatic steatosis. Hepatic PLD1 expression was evaluated in liver biopsy samples in patients with NAFLD. Results: PLD1 expression levels were increased in the hepatocytes of patients with NAFLD and HFD-fed mice. Compared with Pld1-Flox mice, Pld1(H)-KO mice exhibited decreased plasma glucose and lipid levels as well as lipid accumulation in liver tissues after HFD feeding. Transcriptomic analysis showed that hepatocyte-specific deficiency of PLD1 decreased Cd36 expression in steatosis liver tissues, which was confirmed at the protein and gene levels. In vitro, specific inhibition of PLD1 with VU0155069 or VU0359595 decreased CD36 expression and lipid accumulation in oleic acid- or sodium palmitate-treated AML12 cells or primary hepatocytes. Inhibition of hepatocyte PLD1 significantly altered lipid composition, especially phosphatidic acid and lysophosphatidic acid levels in liver tissues with hepatic steatosis. Furthermore, phosphatidic acid, the downstream product of PLD1, increased the expression levels of CD36 in AML12 cells, which was reversed by a PPARγ antagonist. Conclusions: Hepatocyte-specific Pld1 deficiency ameliorates lipid accumulation and NAFLD development by inhibiting the PPARγ/CD36 pathway. PLD1 may be a new target for the treatment of NAFLD. Impact and implications: The involvement of PLD1 in hepatocyte lipid metabolism and NAFLD has not been explicitly explored. In this study, we found that the inhibition of hepatocyte PLD1 exerted potent protective effects against HFD-induced NAFLD, which were attributable to a reduction in PPARγ/CD36 pathway-mediated lipid accumulation in hepatocytes. Targeting hepatocyte PLD1 may be a new target for the treatment of NAFLD.

12.
Yeast ; 40(7): 254-264, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37132227

RESUMO

Astaxanthin is a valuable carotenoid and is used as antioxidant and health care. Phaffia rhodozyma is a potential strain for the biosynthesis of astaxanthin. The unclear metabolic characteristics of P. rhodozyma at different metabolic stages hinder astaxanthin's promotion. This study is conducted to investigate metabolite changes based on quadrupole time-of-flight mass spectrometry metabolomics method. The results showed that the downregulation of purine, pyrimidine, amino acid synthesis, and glycolytic pathways contributed to astaxanthin biosynthesis. Meanwhile, the upregulation of lipid metabolites contributed to astaxanthin accumulation. Therefore, the regulation strategies were proposed based on this. The addition of sodium orthovanadate inhibited the amino acid pathway to increase astaxanthin concentration by 19.2%. And the addition of melatonin promoted lipid metabolism to increase the astaxanthin concentration by 30.3%. It further confirmed that inhibition of amino acid metabolism and promotion of lipid metabolism were beneficial for astaxanthin biosynthesis of P. rhodozyma. It is helpful in understanding metabolic pathways affecting astaxanthin of P. rhodozyma and provides regulatory strategies for metabolism.


Assuntos
Basidiomycota , Carotenoides , Xantofilas/metabolismo , Basidiomycota/química , Metabolômica
13.
Enzyme Microb Technol ; 167: 110241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060759

RESUMO

κ-Carrageenase provides an attractive enzymatic approach to preparation of κ-carrageenan oligosaccharides. Pseudoalteromonas tetraodonis κ-carrageenase is active at the alkaline conditions but displays low thermostability. To further improve its enzymatic performance, two mutants of Q42V and I51H exhibiting both improved thermostability and enzyme activity were screened by the PoPMuSiC algorithm. Compared with the wild-type κ-carrageenase (WT), Q42V and I51H increased the enzyme activity by 20.9% and 25.4%, respectively. After treatment at 50 â„ƒ for 40 min, Q42V and I51H enhanced the residual activity by 31.1% and 25.9%, respectively. The Tm values of Q42V, I51H, and WT determined by differential scanning calorimetry were 58.2 â„ƒ, 54.8 â„ƒ, and 51.2 â„ƒ, respectively. Compared with untreated and HCl-treated κ-carrageenans, Q42V-treated κ-carrageenan exhibited higher pancreatic lipase inhibitory activity. Molecular docking analysis indicated that the additional pi-sigma force and hydrophobic interaction in the enzyme-substrate complex could account for the increased catalytic activity of Q42V and I51H, respectively. Molecular dynamics analysis indicated that the improved thermostability of mutants Q42V and I51H could be attributed to the less structural deviation and the flexible changes of enzyme conformation at high temperature. This study provides new insight into κ-carrageenase performance improvement and identifies good candidates for their industrial applications.


Assuntos
Glicosídeo Hidrolases , Pseudoalteromonas , Carragenina/química , Simulação de Acoplamento Molecular , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Pseudoalteromonas/genética
14.
Gels ; 9(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36975664

RESUMO

The effect of black tea powder on the antioxidant activity and gel characteristics of fish balls from silver carp were investigated after freezing storage for 7 days. The results show that black tea powder with different concentrations of 0.1%, 0.2% and 0.3% (w/w) could significantly increase the antioxidant activity of fish balls (p < 0.05). In particular, at the concentration of 0.3%, the antioxidant activity was the strongest among these samples, where the reducing power, DPPH, ABTS and OH free radical scavenging rate were up to 0.33, 57.93%, 89.24% and 50.64%, respectively. In addition, black tea powder at the level of 0.3% significantly increased the gel strength, hardness and chewiness while greatly reducing the whiteness of the fish balls (p < 0.05). ESEM observation found that the addition of black tea powder could promote the crosslinking of proteins and reduced the pore size of the gel network structure of the fish balls. The results suggest that black tea powder could be used as a natural antioxidant and gel texture enhancer in fish balls, which we found to be much related to the phenolic compounds of black tea powder.

15.
Theranostics ; 13(3): 896-909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793857

RESUMO

Background: Excessive immune activation leads to secondary injury and impedes injured brain recovery after ischemic stroke. However, few effective methods are currently used for equilibrating immune balance. CD3+NK1.1-TCRß+CD4-CD8- double-negative T (DNT) cells which do not express NK cell surface markers are unique regulatory cells that maintain homeostasis in several immune-related diseases. However, the therapeutic potential and regulatory mechanism of DNT cells in ischemic stroke are still unknown. Methods: Mouse ischemic stroke is induced by occlusion of the distal branches of the middle cerebral artery (dMCAO). DNT cells were adoptively transferred intravenously into ischemic stroke mice. Neural recovery was evaluated by TTC staining and behavioral analysis. Using immunofluorescence, flow cytometry, and RNA sequencing, the immune regulatory function of DNT cells was investigated at different time points post ischemic stroke. Results: Adoptive transfer of DNT cells significantly reduces infarct volume and improves sensorimotor function after ischemic stroke. DNT cells suppress peripheral Trem1+ myeloid cell differentiation during the acute phase. Furthermore, they infiltrate the ischemic tissue via CCR5 and equilibrate the local immune balance during the subacute phase. During the chronic phase, DNT cells enhance Treg cell recruitment through CCL5, eventually developing an immune homeostatic milieu for neuronal recovery. Conclusions: DNT cell treatment renders the comprehensive anti-inflammatory roles in specific phases of ischemic stroke. Our study suggests that the adoptive transfer of regulatory DNT cells may be a potential cell-based therapy for ischemic stroke.


Assuntos
AVC Isquêmico , Camundongos , Animais , AVC Isquêmico/terapia , Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T Reguladores , Inflamação , Linfócitos T CD8-Positivos
16.
Food Funct ; 14(2): 1133-1147, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36594623

RESUMO

A combination of polysaccharides and tea polyphenols can enhance immune activity synergistically, depending on the type and structure of polysaccharides, but the mechanism remains unknown. This study is aimed to investigate the regulating effects of different seaweed polysaccharide (ι-carrageenan, agarose) and tea polyphenol blends on intestinal flora and intestinal inflammation using an in vitro ascending-transverse-descending colon fermentation system and RAW264.7 cell model. The results showed that seaweed polysaccharides in the presence of tea polyphenol were almost completely degraded at transverse colon fermentation for 36 h. Agarose significantly enhanced the butyric acid production content by increasing the abundance of Lachnospiraceae, whereas agarose and tea polyphenol blends did not have a synergistic effect. On the contrary, ι-carrageenan and tea polyphenol blends synergistically increased the abundance of beneficial bacteria (e.g., Bacteroidetes and Bifidobacterium) and promoted the production of short-chain fatty acids (SCFAs), such as isobutyric acid. Such changes tended to alter the impacts of different seaweed polysaccharides and tea polyphenol blends on intestinal inflammation. Among them, ι-carrageenan and tea polyphenol blends were the most effective in inhibiting lipopolysaccharide-induced NO, ROS, IL-6, and TNF-α production in RAW264.7 cells, indicating the alleviated intestinal inflammation. The results suggest that the seaweed polysaccharide and tea polyphenol blends have prebiotic potential and can benefit intestinal health.


Assuntos
Microbioma Gastrointestinal , Alga Marinha , Humanos , Alga Marinha/metabolismo , Fermentação , Carragenina , Sefarose , Polifenóis/farmacologia , Polissacarídeos/farmacologia , Chá/química , Inflamação
17.
J Colloid Interface Sci ; 629(Pt A): 846-853, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36099850

RESUMO

Alkaline water electrolysis (AWE) offers a promising route for green hydrogen production. However, its industrial application is impeded by unsatisfactory energy conversion efficiency. Herein, a robust electrode composed of porous nickel foam (PNF) and Fe-doped Ni3S2 (Fe-Ni3S2) nanosheet arrays was fabricated and applied for industrial AWE. By conducting a scalable dynamic bubble-template method, PNF with high loading of active catalysts was prepared. The superhydrophilicity of PNF facilitates bubble detachment and promotes mass transfer, especially at high current densities. In addition, Fe-Ni3S2 with optimized electronic structure is featured with enhanced electrical conductivity, sufficient exposure of active sites, and optimized adsorption of intermediates. Benefiting from the concerted advantages of PNF and Fe-Ni3S2, the obtained Fe-Ni3S2/PNF-5 electrode with an optimal Fe content of 5 mol% exhibits high catalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Compared with the Pt/C/NF||IrO2/NF couple, the Fe-Ni3S2/PNF-5||Fe-Ni3S2/PNF-5 couple delivers a current density of 10 mA cm-2 at a low cell voltage of 1.50 V for AWE. Under industrial conditions, a competitive cell voltage of 1.75 V is needed for achieving a high current density of 400 mA cm-2. Besides, the couple can operate stably for 120 h, outperforming the commercial RN||RN couple. This work provides a novel strategy to elevate the loading amount of catalysts and improve the electrochemical performance of the electrode for practical AWE application.

18.
AMB Express ; 12(1): 139, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335230

RESUMO

Marine bacterium Microbulbifer sp. ALW1 was revealed to be able to effectively degrade Laminaria japonica thallus fragments into fine particles. Polysaccharide substrate specificity analysis indicated that ALW1 could produce extracellular alginate lyase, laminarinase, fucoidanase and cellulase. Based on alignment of the 16 S rRNA sequence with other reference relatives, ALW1 showed the closest relationship with Microbulbifer aggregans CCB-MM1T. The cell morphology and some basic physiological and biochemical parameters of ALW1 cells were characterised. ALW1 is a Gram-negative, rod- or oval-shaped, non-spore-forming and non-motile bacterium. The DNA-DNA relatedness values of ALW1 with type strains of M. gwangyangensis (JCM 17,800), M. aggregans (JCM 31,875), M. maritimus (JCM 12,187), M. okinawensis (JCM 16,147) and M. rhizosphaerae (DSM 28,920) were 28.9%, 43.3%, 41.2%, 35.4% and 45.6%, respectively. The major cell wall sugars of ALW1 were determined to be ribose and galactose, which differed from other closely related species. These characteristics indicated that ALW1 could be assigned to a separate species of the genus Microbulbifer. The complete genome of ALW1 contained one circular chromosome with 4,682,287 bp and a GC content of 56.86%. The putative encoded proteins were categorised based on their functional annotations. Phenotypic, physiological, biochemical and genomic characterisation will provide insights into the many potential industrial applications of Microbulbifer sp. ALW1.Key points.

19.
Protein Expr Purif ; 200: 106171, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36103937

RESUMO

The diverse biological activities of alginate oligosaccharides attracted extensive exploration of alginate lyases with various substrate specificity and enzymatic properties. In this study, an alginate lyase from Microbulbifer sp. ALW1, namely AlgL7, was phylogenetically classified into the polysaccharide lyase family 7 (PL7). The conserved amino acid residues Tyr606 and His499 in AlgL7 were predicted to act as the general acid/base catalysts. The enzyme was enzymatically characterized after heterologous expression and purification in E. coli. AlgL7 displayed optimal activity at 40 °C and pH 7.0. It had good stability at temperature below 35 °C and within a pH range of 5.0-10.0. AlgL7 exhibited good stability against the reducing reagent ß-ME and the surfactants of Tween-20 and Triton X-100. The degradation profiles of alginate indicated AlgL7 was a bifunctional endolytic alginate lyase generating alginate oligosaccharides with the degrees of polymerization 2-4. The degradation products of sodium alginate exhibited stronger antioxidant activities than the untreated polysaccharide. In addition, AlgL7 could directly digest Laminaria japonica to produce alginate oligosaccharides. These characteristics of AlgL7 offer a great potential of its application in high-value utilization of brown algae resources.


Assuntos
Alteromonadaceae , Laminaria , Alginatos/metabolismo , Aminoácidos , Antioxidantes , Proteínas de Bactérias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Laminaria/metabolismo , Octoxinol , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/química , Polissorbatos , Especificidade por Substrato , Tensoativos , Temperatura
20.
Int J Biol Macromol ; 222(Pt A): 818-829, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174866

RESUMO

Polysaccharide extracted from red seaweed Bangia fusco-purpurea (BFP) is a novel sulfated galactan, differed from agarans and carrageenans in fine structure. In this study, in vitro fermentation characteristics of BFP by human gut microbiota and its protective effect on lipopolysaccharide (LPS)-induced injury in Caco-2 cells were investigated. Our results showed that BFP was mainly degraded at transverse colon for 18 h fermentation by gut microbiota with reduced molecular weight. Meanwhile, BFP fermentation was associated with increased short-chain fatty acids (SCFAs) as compared to control group, especially acetic acid was increased to 129.53 ± 0.24 from 82.14 ± 0.23 mmol/L, and butyric acid was up to 1.56 ± 0.004 from 0.62 ± 0.01 mmol/L. Furthermore, BFP promoted abundances of Bacteroidetes and Firmicutes, while decreased numbers of Proteobacteria. The up-regrated beneficial differential metabolites were SCFAs, L-proline, arginine, folic acid, pyridoxamine, thiamine, etc. (p < 0.05), and their related metabolic pathways mainly included mTOR, arginine biosynthesis, and vitamin metabolism. Notably, BFP fermentation products at transverse colon significantly restored cell viability of LPS-treated Caco-2 cells from 73.79 ± 0.48 % to 93.79-99.64 %, which might be caused by increased beneficial differential metabolites (e.g., SCFAs). Our findings suggest that BFP has prebiotic potential and can enhance gut health.


Assuntos
Microbioma Gastrointestinal , Rodófitas , Humanos , Arginina/farmacologia , Células CACO-2 , Ácidos Graxos Voláteis/farmacologia , Fermentação , Lipopolissacarídeos/farmacologia , Polissacarídeos/química , Rodófitas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA