Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036123

RESUMO

Long-term cultivation of Panax ginseng cell lines leads to a decreasing synthesis of the biologically active substances used in traditional medicine. To gain insight into the cellular mechanisms which may influence this process, we analyzed variations within the rDNA cluster of the Oriental ginseng cell lines. The cell lines were cultivated for 6 and 24 years; the number of nucleoli and chromosomes was analyzed. The complete 18S rDNA sequences were cloned and sequenced. The nucleotide polymorphism and phylogenetic relations of the sequences were analyzed, and the secondary structures for separate 18S rRNA regions were modeled. The 18S rDNA accumulated mutations during cell cultivation that correlate well with an increase in the number of chromosomes and nucleoli. The patterns of nucleotide diversity are culture-specific and the increasing polymorphism associates with cytosine methylation sites. The secondary structures of some 18S rRNA regions and their interaction can alter during cultivation. The phylogenetic tree topologies are particular for each cell line.The observed alterations in rDNA clusters are associated with a somaclonal variation, leading to changes in the pattern of intracellular synthesis during cell cultivation. The identified divergent rRNAs could provide additional gene expression regulation in P. ginseng cells by forming heterogeneous ribosomes.


Assuntos
Senescência Celular , DNA de Plantas/metabolismo , DNA Ribossômico/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Panax/metabolismo , Células Vegetais/metabolismo , Panax/genética
2.
J Ginseng Res ; 40(2): 176-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27158239

RESUMO

BACKGROUND: Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. METHODS: The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. RESULTS: In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440-640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. CONCLUSION: This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine.

3.
Mol Ecol ; 25(3): 661-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26833858

RESUMO

Estimating the frequency of hybridization is important to understand its evolutionary consequences and its effects on conservation efforts. In this study, we examined the extent of hybridization in two sister species of ducks that hybridize. We used mitochondrial control region sequences and 3589 double-digest restriction-associated DNA sequences (ddRADseq) to identify admixture between wild lesser scaup (Aythya affinis) and greater scaup (A. marila). Among 111 individuals, we found one introgressed mitochondrial DNA haplotype in lesser scaup and four in greater scaup. Likewise, based on the site-frequency spectrum from autosomal DNA, gene flow was asymmetrical, with higher rates from lesser into greater scaup. However, using ddRADseq nuclear DNA, all individuals were assigned to their respective species with >0.95 posterior assignment probability. To examine the power for detecting admixture, we simulated a breeding experiment in which empirical data were used to create F1 hybrids and nine generations (F2-F10) of backcrossing. F1 hybrids and F2, F3 and most F4 backcrosses were clearly distinguishable from pure individuals, but evidence of admixed histories was effectively lost after the fourth generation. Thus, we conclude that low interspecific assignment probabilities (0.011-0.043) for two lesser and nineteen greater scaup were consistent with admixed histories beyond the F3 generation. These results indicate that the propensity of these species to hybridize in the wild is low and largely asymmetric. When applied to species-specific cases, our approach offers powerful utility for examining concerns of hybridization in conservation efforts, especially for determining the generational time until admixed histories are effectively lost through backcrossing.


Assuntos
Patos/genética , Fluxo Gênico , Hibridização Genética , Animais , DNA Mitocondrial/genética , Patos/classificação , Feminino , Genética Populacional , Haplótipos , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
4.
Mol Ecol ; 23(12): 2961-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24854419

RESUMO

Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation.


Assuntos
Patos/classificação , Fluxo Gênico , Especiação Genética , Genética Populacional , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Patos/genética , Haplótipos , Íntrons , Dados de Sequência Molecular , Fenótipo , Análise de Sequência de DNA
5.
Planta ; 237(4): 933-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23179442

RESUMO

DNA methylation is known to play an important role in various developmental processes and defense mechanisms in plants and other organisms. However, it is not known whether DNA methylation is implicated in the genetic regulation of plant secondary metabolism, including resveratrol biosynthesis. Resveratrol is a naturally occurring polyphenol that is present in grapes, peanuts, and other plant sources, and it exhibits a wide range of valuable biologically active properties. The transformation of the wild-growing grape Vitis amurensis with the oncogene rolB from Agrobacterium rhizogenes has been demonstrated to considerably increase resveratrol production. To investigate whether DNA methylation regulates resveratrol biosynthesis, we treated both rolB transgenic and empty vector control V. amurensis cell cultures with the DNA demethylation agent 5-azacytosine (azaC). The azaC treatment significantly increased stilbene synthase 10 gene (VaSTS10) expression and resveratrol content in the V. amurensis cell cultures. Using bisulfite sequencing, we examined the methylation status of VaSTS10 in cell cultures under normal conditions and after azaC treatment. Both the promoter and 3'-end of the protein coding region of the VaSTS10 gene were hypermethylated (54-67 %) in the control cell culture. The rolB transgenic cell culture had high levels of resveratrol and lower hypermethylation levels of the VaSTS10 gene (20-47 %). The azaC treatment resulted in reduction in the DNA methylation levels in the promoter and coding regions of the VaSTS10 gene in both cell cultures. These data suggest that the DNA methylation may be involved in the control of resveratrol biosynthesis via the regulation of STS genes expression.


Assuntos
Aciltransferases/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Estilbenos/metabolismo , Vitis/metabolismo , Actinas/metabolismo , Aciltransferases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resveratrol , Vitis/genética
6.
Plant Physiol ; 158(3): 1371-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22271748

RESUMO

The rolB (for rooting locus of Agrobacterium rhizogenes) oncogene has previously been identified as a key player in the formation of hairy roots during the plant-A. rhizogenes interaction. In this study, using single-cell assays based on confocal microscopy, we demonstrated reduced levels of reactive oxygen species (ROS) in rolB-expressing Rubia cordifolia, Panax ginseng, and Arabidopsis (Arabidopsis thaliana) cells. The expression of rolB was sufficient to inhibit excessive elevations of ROS induced by paraquat, menadione, and light stress and prevent cell death induced by chronic oxidative stress. In rolB-expressing cells, we detected the enhanced expression of antioxidant genes encoding cytosolic ascorbate peroxidase, catalase, and superoxide dismutase. We conclude that, similar to pathogenic determinants in other pathogenic bacteria, rolB suppresses ROS and plays a role not only in cell differentiation but also in ROS metabolism.


Assuntos
Agrobacterium/genética , Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Células Vegetais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , beta-Glucosidase/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Proteínas de Bactérias/genética , Morte Celular , Sobrevivência Celular , Meios de Cultura/metabolismo , Glutationa/metabolismo , Luz , Estresse Oxidativo , Panax/citologia , Panax/efeitos dos fármacos , Panax/genética , Panax/metabolismo , Paraquat/farmacologia , Células Vegetais/efeitos dos fármacos , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Rubia/efeitos dos fármacos , Rubia/genética , Rubia/metabolismo , Plantas Tolerantes a Sal/citologia , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Vitamina K 3/farmacologia , beta-Glucosidase/genética
7.
J Biomol Struct Dyn ; 29(4): 643-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22208267

Assuntos
Vida , Vocabulário
8.
J Ginseng Res ; 36(3): 322-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23717134

RESUMO

Results of karyological study of intact plants and some callus lines of Panax ginseng are presented. In the native plants of P. ginseng the nucleus with 1 nucleolus (90%) dominate, and nucleus with 2 nucleoli is rare. One nucleolar nucleus also dominate in interphase nuclei of cells of cultivated P. ginseng (from 2006), but we also found nucleus with 2 to 3 nucleoli in the same cell lines. Interphase nuclei of P. ginseng in long cultivated lines (from 1988) contain 1 to 9 nucleoli, with a predominance of nuclei containing from 3 to 4 nucleoli. It was shown that long-time cells (cultivated since 1988) had cytogenetic changes such as increase level of polyploid and aneuploid cells, increase of nucleoli number into interphase nucleus and decrease of nuclei/nucleoli ratio. These long-time cultivated cells had very low ginsenoside content.

9.
Bioeng Bugs ; 2(6): 327-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22064507

RESUMO

Heterologous expression of a constitutively active calcium-dependent protein kinase (CDPK) gene was previously shown to increase secondary metabolite production in cultured cells of Rubia cordifolia, but the critical question of how CDPK activates secondary metabolism remains to be answered. In this article, we report that the expression of the Arabidopsis CDPK gene, AtCPK1, in R. cordifolia cells caused moderate and stable elevation of intracellular reactive oxygen species (ROS) levels. In contrast, the non-active, mutated AtCPK1 gene did not cause such an effect. The active AtCPK1 also increased cell size, likely by restricting cell division. These results are consistent with the model in which constitutive expression of AtCPK1 mimics the effects of elicitors, acting on secondary metabolism via the activation of ROS production.


Assuntos
Antraquinonas/metabolismo , Proteínas de Arabidopsis , Arabidopsis/genética , Biotecnologia/métodos , Plantas Geneticamente Modificadas/genética , Proteínas Quinases , Rubia/enzimologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Corantes Fluorescentes/análise , Microscopia Confocal , Plantas Geneticamente Modificadas/enzimologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rubia/genética , Análise de Célula Única
10.
Mar Biotechnol (NY) ; 13(4): 810-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21181423

RESUMO

Silicatein genes are involved in spicule formation in demosponges (Demospongiae: Porifera). However, numerous attempts to isolate silicatein genes from glass sponges (Hexactinellida: Porifera) resulted in a limited success. In the present investigation, we performed analysis of potential silicatein/cathepsin transcripts in three different species of glass sponges (Pheronema raphanus, Aulosaccus schulzei, and Bathydorus levis). In total, 472 clones of such transcripts have been analyzed. Most of them represent cathepsin transcripts and only three clones have been found to represent transcripts, which can be related to silicateins. Silicatein transcripts were identified in A. schulzei (Hexactinellida; Lyssacinosida; Rosselidae), and the corresponding gene was called AuSil-Hexa. Expression of AuSil-Hexa in A. schulzei was confirmed by real-time PCR. Comparative sequence analysis indicates high sequence identity of the A. schulzei silicatein with demosponge silicateins described previously. A phylogenetic analysis indicates that the AuSil-Hexa protein belongs to silicateins. However, the AuSil-Hexa protein contains a catalytic cysteine instead of the conventional serine.


Assuntos
Catepsinas/genética , Filogenia , Poríferos/genética , Conformação Proteica , Sequência de Aminoácidos , Animais , Sequência de Bases , Teorema de Bayes , China , Clonagem Molecular , Biologia Computacional , Primers do DNA/genética , DNA Complementar/genética , Perfilação da Expressão Gênica , Modelos Genéticos , Dados de Sequência Molecular , Oceanos e Mares , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
11.
Appl Microbiol Biotechnol ; 88(3): 727-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20683716

RESUMO

Resveratrol, a naturally occurring polyphenol, has been reported to exhibit a wide range of valuable biological and pharmacological properties. In the present investigation, we show that transformation of Vitis amurensis Rupr. with the oncogene rolC of Agrobacterium rhizogenes increased resveratrol production in the two transformed callus cultures 3.7 and 11.9 times. The rolC-transformed calli were capable of producing 0.099% and 0.144% dry weight of resveratrol. We characterized phenylalanine ammonia-lyase (PAL) and stilbene synthase (STS) gene expression in the two rolC transgenic callus cultures of V. amurensis. In the rolC transgenic culture with higher resveratrol content, expression of VaPAL3, VaSTS3, VaSTS4, VaSTS5, VaSTS6, VaSTS8, VaSTS9, and VaSTS10 was increased; while in the rolC culture with lower resveratrol content, expression of VaPAL3 and VaSTS9 was increased. We suggest that transformation of V. amurensis calli with the rolС gene induced resveratrol accumulation via selective enhancement of expression of individual PAL and STS genes involved in resveratrol biosynthesis. We compared the data on PAL and STS gene expression in rolC transgenic calli with the previously obtained results for rolB transgenic calli of V. amurensis. We propose that the transformation of V. amurensis with the rolC and rolB genes of A. rhizogenes increased resveratrol accumulation through different regulatory pathways.


Assuntos
Aciltransferases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Estilbenos/metabolismo , Vitis/enzimologia , Aciltransferases/genética , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Família Multigênica , Fenilalanina Amônia-Liase/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Resveratrol , Rhizobium/genética , Vitis/genética
12.
Chin Med ; 5: 21, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20540716

RESUMO

BACKGROUND: The natural habitat of wild P. ginseng is currently found only in the Russian Primorye and the populations are extremely exhausted and require restoration. Analysis of the genetic diversity and population structure of an endangered species is a prerequisite for conservation. The present study aims to investigate the patterns and levels of genetic polymorphism and population structures of wild P. ginseng with the AFLP method to (1) estimate the level of genetic diversity in the P. ginseng populations in the Russian Primorsky Krai, (2) calculate the distribution of variability within a population and among populations and (3) examine the genetic relationship between the populations. METHODS: Genetic variability and population structure of ten P. ginseng populations were investigated with Amplified Fragment Length Polymorphism (AFLP) markers. The genetic relationships among P. ginseng plants and populations were delineated. RESULTS: The mean genetic variability within populations was high. The mean level of polymorphisms was 55.68% at the population level and 99.65% at the species level. The Shannon's index ranged between 0.1602 and 0.3222 with an average of 0.2626 at the population level and 0.3967 at the species level. The analysis of molecular variances (AMOVA) showed a significant population structure in P. ginseng. The partition of genetic diversity with AMOVA suggested that the majority of the genetic variation (64.5%) was within populations of P. ginseng. The inter-population variability was approximately 36% of the total variability. The genetic relationships among P. ginseng plants and populations were reconstructed by Minimum Spanning tree (MS-tree) on the basis of Euclidean distances with ARLEQUIN and NTSYS, respectively. The MS-trees suggest that the southern Uss, Part and Nad populations may have promoted P. ginseng distribution throughout the Russian Primorye. CONCLUSION: The P. ginseng populations in the Russian Primorye are significant in genetic diversity. The high variability demonstrates that the current genetic resources of P. ginseng populations have not been exposed to depletion.

13.
Mar Biotechnol (NY) ; 12(4): 403-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19813057

RESUMO

Silicatein genes are known to be involved in siliceous spicule formation in marine sponges. Proteins encoded by these genes, silicateins, were recently proposed for nanobiotechnological applications. We studied silicatein genes of marine sponges Latrunculia oparinae collected in the west Pacific region, shelf of Kuril Islands. Five silicatein genes, LoSilA1, LoSilA1a, LoSilA2, and LoSilA3 (silicatein-alpha group), LoSilB (silicatein-beta group), and one cathepsin gene, LoCath, were isolated from the sponge L. oparinae for the first time. The deduced amino acid sequence of L. oparinae silicateins showed high-sequence identity with silicateins described previously. LoCath contains the catalytic triad of amino acid residues Cys-His-Asn characteristic for cathepsins as well as motifs typical for silicateins. A phylogenetic analysis places LoCath between sponge silicateins-beta and L-cathepsins suggesting that the LoCath gene represents an intermediate form between silicatein and cathepsin genes. Additionally, we identified, for the first time, silicatein genes (AcSilA and AcSilB) in nonspicule-forming marine sponge, Acsmall a, Cyrillicnthodendrilla sp. The results suggest that silicateins could participate also in the function(s) unrelated to spiculogenesis.


Assuntos
Catepsinas/genética , Poríferos/genética , Sequência de Aminoácidos , Animais , Catepsinas/química , Catepsinas/metabolismo , Regulação da Expressão Gênica , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , Poríferos/classificação , Poríferos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Plant Cell Rep ; 28(8): 1273-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19529942

RESUMO

It has been shown previously that the rolC gene from Agrobacterium tumefaciens gene was stably and highly expressed in 15-year-old Panax ginseng transgenic cell cultures. In the present report, we analyze in detail the nucleotide composition of the rolC and nptII (neomycin phosphotransferase) genes, which is the selective marker used for transgenic cell cultures of P. ginseng. It has been established that the nucleotide sequences of the rolC and nptII genes underwent mutagenesis during cultivation. Particularly, 1-4 nucleotide substitutions were found per sequence in the 540 and 798 bp segments of the complete rolC and nptII genes, respectively. Approximately half of these nucleotide substitutions caused changes in the structure of the predicted gene product. In addition, we attempted to determine the rate of accumulation of these changes by comparison of DNA extracted from P. ginseng cell cultures from 1995 to 2007. It was observed that the frequency of nucleotide substitutions for the rolC and nptII genes in 1995 was 1.21 +/- 0.02 per 1,000 nucleotides analyzed, while in 2007, the nucleotide substitutions significantly increased (1.37 +/- 0.07 per 1,000 nucleotides analyzed). Analyzing the nucleotide substitutions, we found that substitution to G or to C nucleotides significantly increased (in 1.9 times) in the rolC and nptII genes compared with P. ginseng actin gene. Finally, the level of nucleotide substitutions in the rolC gene was 1.1-fold higher when compared with the nptII gene. Thus, for the first time, we have experimentally demonstrated the level of nucleotide substitutions in transferred genes in transgenic plant cell cultures.


Assuntos
Análise Mutacional de DNA , Genes Bacterianos , Panax/genética , Transgenes , Agrobacterium tumefaciens/genética , Sequência de Bases , Células Cultivadas , DNA de Plantas/genética , Canamicina Quinase/genética , Mutagênese , Panax/citologia , Plantas Geneticamente Modificadas/genética
15.
J Plant Physiol ; 166(11): 1194-206, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19285358

RESUMO

It has been established that transformation of Vitis amurensis callus culture with the plant oncogene rolB of Agrobacterium rhizogenes results in a high level of resveratrol production in the transformed culture. In the present report, we investigated two rolB transgenic V. amurensis cell cultures with different levels of rolB expression and resveratrol production. We examined whether the calcium ion flux and later steps of the calcium-mediated signal transduction pathway play a role in resveratrol biosynthesis in the rolB transgenic cultures. It has been shown that the calcium channel blockers, LaCl(3), verapamil, and niflumic acid, significantly reduced the accumulation of resveratrol in the rolB transgenic cultures. The number of the calcium-dependent protein kinase (CDPK) transcript variants and abundance of some of the transcripts were considerably altered in the rolB transgenic cell cultures, as revealed by frequency analysis of RT-PCR products and real-time PCR. Some unusual CDPK transcripts with deletions and insertions in the kinase domain were isolated from cDNA probes of rolB-transformed cells. These results suggest that active resveratrol biosynthesis in rolB transgenic cultures of V. amurensis is Ca2+ dependent. We propose that the rolB gene has an important role in regulation of calcium-dependent transduction pathways in transformed cells.


Assuntos
Proteínas de Bactérias/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/genética , Estilbenos/metabolismo , Vitis/metabolismo , beta-Glucosidase/genética , Cromatografia Líquida de Alta Pressão , Plantas Geneticamente Modificadas/genética , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitis/genética
16.
Mol Plant Microbe Interact ; 21(12): 1561-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18986252

RESUMO

It is known that expression of the Agrobacterium rhizogenes rolC gene in transformed plant cells causes defense-like reactions, such as increased phytoalexin production and expression of pathogenesis-related proteins. In the present study, we examined whether this phenomenon is associated with increased production of reactive oxygen species (ROS). Single-cell assays based on confocal microscopy and fluorogenic dyes (2,7-dichlorofluorescein diacetate and dihydrorhodamine 123) showed reduced steady-state levels of ROS in rolC-expressing Rubia cordifolia cells as compared with normal cells. Paraquat, a ROS inducer, caused significant ROS elevation in normal cells but had little effect on rolC-transformed cells. Likewise, ROS elevation triggered by a light stress was suppressed in transformed cells. Our results indicate that the rolC gene acts as a ROS suppressor in unstressed cells and its expression prevents stress-induced ROS elevations. We detected a two- to threefold increase in tolerance of rolC-transformed cells to salt, heat, and cold treatments. Simultaneously, rolC-transformed cells maintained permanently active defensive status, as found by measuring isochorismate synthase gene expression and anthraquinone production. Thus, the oncogene provoked multiple effects in which ROS production and phytoalexin production were clearly dissociated.


Assuntos
Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rubia/metabolismo , Estresse Fisiológico , Terpenos/metabolismo , Agrobacterium tumefaciens/genética , Análise de Variância , Antraquinonas/metabolismo , Proteínas de Bactérias/genética , Células Cultivadas , Fluorometria , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Transferases Intramoleculares/metabolismo , Microscopia Confocal , Paraquat/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rubia/efeitos dos fármacos , Rubia/genética , Ácido Salicílico/metabolismo , Sesquiterpenos , Fitoalexinas
17.
Acta Pharmacol Sin ; 29(9): 1127-36, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18718182

RESUMO

AIM: The mating system of Panax ginseng, genetics and ontogenetic structure of its natural populations of Primorye (Russia) were investigated. METHODS: Genetic diversity was assessed using allozyme and the fluorescently based automated amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers. RESULTS: Total genetic diversity at species level is low with allozyme assay (0.023), and high with AFLP (0.255) and SSR (0.259) methods. It is observed within populations according to allozyme (> 99%), AFLP (> 85%), and SSR (> 73%) assays. The indices of genetic variability distribution point out the re-colonization of the Sikhote-Alin by ginseng plants from southern refuges during the warming period in the early Holocene. The capability of ginseng plants to cross- and self-pollinate was shown and the assumption that Panax ginseng is a facultative apomictic plant was confirmed. The reproductive system of ginseng possesses high plasticity and stability of the fertilization process that help the species to survive in stress conditions. Disturbances caused by external or internal factors can be reduced due to the morphogenetic potential of ginseng ovule or apomictic embryo development. Analysis of life stages structure of ginseng populations demonstrates that all of them are not full-constituents because some life stages are absent or occur rarely. CONCLUSION: In all 3 populations, virgin and young generative individuals are predominant. This means that populations studied are viable and the reintroduction of natural ginseng population is possible yet.


Assuntos
Panax/química , Agricultura , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Variação Genética , Panax/genética , Panax/crescimento & desenvolvimento , Folhas de Planta/química , Pólen/genética , Pólen/fisiologia , Pólen/ultraestrutura , Sequências Repetitivas de Ácido Nucleico , Federação Russa
18.
Evolution ; 62(6): 1469-83, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346221

RESUMO

More than 100 species of birds have Holarctic distributions extending across Eurasia and North America, and many of them likely achieved these distributions by recently colonizing one continent from the other. Mitochondrial DNA (mtDNA) and five nuclear introns were sequenced to test the direction and timing of colonization for a Holarctic duck, the gadwall (Anas strepera). Three lines of evidence suggest gadwalls colonized North America from Eurasia. First, New World (NW) gadwalls had fewer alleles at every locus and 61% of the allelic richness found in Old World (OW) gadwalls. Second, NW gadwalls had lower mtDNA allelic richness than other NW ducks. Third, coalescent analysis suggested that less than 5% of the ancestral population contributed to NW gadwalls at the time of divergence. Gadwalls likely colonized North America during the Late Pleistocene (approximately 81,000 years ago), but the confidence interval on that estimate was large (8500-450,000 years ago). Intercontinental gene flow and selection also likely contributed to genetic diversity in gadwalls. This study illustrates the use of multiple loci and coalescent analyses for critically testing a priori hypotheses regarding dispersal and colonization and provides an independent datapoint supporting an OW to NW bias in the direction of colonization.


Assuntos
Demografia , Patos/genética , Variação Genética , Genética Populacional , Filogenia , Animais , Sequência de Bases , Primers do DNA/genética , DNA Mitocondrial/genética , Europa (Continente) , Geografia , Haplótipos/genética , Modelos Genéticos , Dados de Sequência Molecular , América do Norte , Análise de Sequência de DNA , Especificidade da Espécie
19.
Biotechnol Bioeng ; 100(1): 118-25, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18023060

RESUMO

It is known that the rolA, rolB, and rolC genes of Agrobacterium rhizogenes T-DNA affect processes of plant development and activate the synthesis of secondary metabolites in transformed plant cells. Although a synergistic activity of the rol genes on root formation is well-documented, little is known about their individual and combined action on secondary metabolism. In the present investigation, we provide evidence indicating that individual rolA, rolB, and rolC genes are capable of increasing biosynthesis of anthraquinones (AQs) in transformed calli of Rubia cordifolia. The stimulatory effect was due to the increased transcription of a key gene of AQ biosynthesis, the isochorismate synthase (ICS) gene. The strongest AQ-stimulating activity was shown for an R. cordifolia culture expressing rolB at high levels, where rolB ensured a 15-fold increase of AQ accumulation compared with the control, non-transformed calli. A tyrosine phosphatase inhibitor abolished the rolB-induced increase of AQ production, thus indicating the involvement of tyrosine (de)phosphorylation in the rolB-mediated AQ stimulation. The rolA- and rolC-expressing cultures produced 2.8- and 4.3-fold higher levels of AQs, respectively, when compared with the control calli. However, the effect of rolA, rolB, and rolC on AQ biosynthesis was not synergistic because rolA and rolC apparently attenuated the stimulatory effect of rolB on AQ biosynthesis. Therefore, the rol-gene-mediated signals that promote root formation and those which activate biosynthesis of secondary metabolites seem to have a point of divergence.


Assuntos
Antraquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Modelos Biológicos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Rubia/fisiologia , beta-Glucosidase/metabolismo , Simulação por Computador , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia
20.
Biotechnol J ; 2(7): 818-25, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17582826

RESUMO

Achievements and problems in both the studies on natural bioactive compounds from the Far-Eastern higher plants and marine invertebrates and development of the corresponding biotechnologies concerning new drugs and food supplements, as well as pharmaceutical leads are discussed. Special emphasis is made on recent results from the Far-eastern Institutions belonging to the Russian Academy of Sciences, and their application in both medicine and the food industry, as well as on peculiarities of biological and chemical diversity in the North-Western part of Asia and adjoining seas.


Assuntos
Biotecnologia/economia , Biotecnologia/tendências , Financiamento Governamental/tendências , Indústrias/economia , Indústrias/tendências , Pesquisa/economia , Pesquisa/tendências , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA