RESUMO
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
RESUMO
Asymmetric hydrogenation finds widespread application in academia and industry. And indeed, a number of processes have been implemented for the production of pharma and agro intermediates as well as flavors & fragrances. Although these processes are all based on the use of late transition metals as catalysts, there is an increasing interest in the use of base metal catalysis in view of their lower cost and the expected different substrate scope. Catalysts based on cobalt have already shown their potential in enantioselective hydrogenation chemistry. This review outlines the impressive progress made in recent years on cobalt-catalyzed asymmetric hydrogenation of different unsaturated substrates. We also illustrate the ligand dependent substrate specificity as well as the mechanistic variability in detail. This may well guide further catalyst development in this research area.
RESUMO
A convenient synthesis of enantiopure mixed donor phosphine-phosphite ligands has been developed incorporating P-stereogenic phosphanorbornane and axially chiral bisnaphthols into one ligand structure. The ligands were applied in Pd-catalyzed asymmetric allylic substitution of diphenylallyl acetate, Rh-catalyzed asymmetric hydroformylation of styrene and Rh-catalyzed asymmetric hydrogenation of an acetylated dehydroamino ester. Excellent branched selectivity was observed in the hydroformylation although low ee was found. Moderate ee's of up to 60% in allylic substitution and 50% in hydrogenation were obtained using bisnaphthol-derived ligands.
RESUMO
Sulfur-protected enantiopure P-chiral 1-phosphanorbornane silyl ethers 5a,b are obtained in high yields via the reaction of the hydroxy group of P-chiral 1-phosphanorbornane alcohol 4 with tert-butyldimethylsilyl chloride (TBDMSCl) and triphenylsilyl chloride (TPSCl). The corresponding optically pure silyl ethers 5a,b are purified via crystallization and fully structurally characterized. Desulfurization with excess Raney nickel gives access to bulky monodentate enantiopure phosphorus(III) 1-phosphanorbornane silyl ethers 6a,b which are subsequently applied as ligands in iridium-catalyzed asymmetric hydrogenation of a prochiral ketone and enamide. Better activity and selectivity were observed in the latter case.
RESUMO
Primary and secondary amines selectively react with the lactone moiety of γ-valerolactone oxide (GVLO). Several primary amines afforded the resulting epoxyamides with an intact epoxy group. In some cases addition of two equivalents of amine resulted in additional epoxide opening to give α,γ-dihydroxy-ß-amino-amides. The selective lactone-opening in GVLO was further corroborated by DFT-studies.
RESUMO
Direct asymmetric reductive amination of bio-based levulinic acid (LA) to the enantioenriched 5-methylpyrrolidinone is achieved by using a readily available chiral Ru/bisphosphine catalyst with excellent enantioselectivity (up to 96 %â ee) and high isolated yield (up to 89 %). Methyl levulinate (ML), a byproduct from the industrial production of 2,5-furandicarboxylic acid (FDCA), can be used instead of LA with similar reactivity and selectivity. Mass spectrometry and isotope labelling studies indicate that the chiral lactam is formed via imine-enamine tautomerization/cyclization followed by asymmetric hydrogenation of the cyclic enamide.
RESUMO
The enantioselective hydrogenation of cyclic enamides has been achieved using an earth-abundant cobalt-bisphosphine catalyst. Using CoCl2 /(S,S)-Ph-BPE, several trisubstituted carbocyclic enamides were reduced with high activity and excellent enantioselectivity (up to 99 %) to the corresponding saturated amides. The methodology can be extended to the synthesis of chiral amines by base hydrolysis of the hydrogenation products. Preliminary mechanistic investigations reveal the presence of a high spin cobalt (II) species in the catalytic cycle. We propose that the hydrogenation of the carbon-carbon double bond proceeds via a sigma-bond-metathesis pathway.
Assuntos
Amidas , Cobalto , Amidas/química , Hidrogenação , Estereoisomerismo , Catálise , CarbonoRESUMO
Methyl vinyl glycolate (MVG) can be obtained by acid-catalyzed conversion of C4 and C6 sugars. Applications of MVG in polymers are so far limited to its use as co-monomer for poly(lactic acid) and as crosslinking agent. In this work, hydroformylation and methoxycarbonylation of MVG were investigated to produce novel bifunctional monomers. Polyesters with high renewable-atom content were successfully prepared and characterized.
Assuntos
Glicolatos , Poliésteres , Polímeros , Cloreto de PolivinilaRESUMO
Biomass derived glycolaldehyde was employed as C1 building block for the N-formylation of secondary amines using air as oxidant. The reaction is atom economic, highly selective and proceeds under catalyst free conditions. This strategy can be used for the synthesis of cyclic and acyclic formylamines, including DMF. Mechanistic studies suggest a radical oxidation pathway.
Assuntos
Acetaldeído , Aminas , Catálise , OxidantesRESUMO
Silicon-modified polyureas were depolymerized by hydrogenation in the presence of Ru and Mn catalysts. Yields of up to 84% of the aliphatic diamine and 81% of silicon-containing diamine were achieved with a commercially available PNP-Ru catalyst.
Assuntos
Diaminas , Silício , Catálise , Hidrogenação , PolímerosRESUMO
An efficient approach to synthesize α-keto aldehydes was established through selective oxidation of α-hydroxy ketones catalyzed by Cu(I) using oxygen as oxidant. A wide array of α-keto aldehydes was prepared with isolated yields of up to 87%. The potential utilization of this reaction was evaluated by gram-scale reactions and synthetic applications.
Assuntos
Aldeídos , Cetonas , Catálise , Estrutura Molecular , OxirreduçãoRESUMO
As the production volume of polymers increases, so does the amount of plastic waste. Plastic recycling is one of the concepts to address in this issue. Unfortunately, only a small fraction of plastic waste is recycled. Even with the development of polymers for closed loop recycling that can be in theory reprocessed infinitely the inherent dilemma is that because of collection, cleaning and separation processes the obtained materials simply are not cost competitive with virgin materials. Chemical upcycling, the conversion of polymers to higher valuable products, either polymeric or monomeric, could mitigate this issue. In the following article, we highlight recent examples in this young but fast-growing field. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
RESUMO
Industrially relevant intermediates such as malonic acid, malonates and 3-oxopropionates can be easily accessed by ozonolysis of α-angelica lactone, derived from the platform chemical levulinic acid. The roles of the solvent and of the quenching conditions are of key importance for the outcome of the reaction.
Assuntos
4-Butirolactona/análogos & derivados , Malonatos/química , Ozônio/química , 4-Butirolactona/química , Malonatos/síntese química , Estrutura MolecularRESUMO
In this review, we describe the synthesis and use in hydrogen transfer reactions of ruthenacycles and iridacycles. The review limits itself to metallacycles where a ligand is bound in bidentate fashion to either ruthenium or iridium via a carbon-metal sigma bond, as well as a dative bond from a heteroatom or an N-heterocyclic carbene. Pincer complexes fall outside the scope. Described are applications in (asymmetric) transfer hydrogenation of aldehydes, ketones, and imines, as well as reductive aminations. Oxidation reactions, i.e., classical Oppenauer oxidation, which is the reverse of transfer hydrogenation, as well as dehydrogenations and oxidations with oxygen, are described. Racemizations of alcohols and secondary amines are also catalyzed by ruthenacycles and iridacycles.
RESUMO
Aryl boronic acids and esters are important building blocks in API synthesis. The palladium-catalyzed Suzuki-Miyaura borylation is the most common method for their preparation. This paper describes an improvement of the current reaction conditions. By using lipophilic bases such as potassium 2-ethyl hexanoate, the borylation reaction could be achieved at 35 °C in less than 2 h with very low palladium loading (0.5 mol %). A preliminary mechanistic study shows a hitherto unrecognized inhibitory effect by the carboxylate anion on the catalytic cycle, whereas 2-ethyl hexanoate minimizes this inhibitory effect. This improved methodology enables borylation of a wide range of substrates under mild conditions.
RESUMO
Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C12 ) were used as the diacid building block. The low melting point of the C12 diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.
RESUMO
Novel air stable ruthenium(ii) complexes bearing tridentate ligands bis((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine (L1), 1-(1-benzyl-1H-1,2,3-triazol-4-yl)-N-(pyridin-2-ylmethyl)methanamine (L2) or 2-(4-phenyl-1H-1,2,3-triazol-1-yl)-N-(pyridin-2-ylmethyl)ethan-1-amine (L3) were synthesised. The nitrogen based ligands were easily prepared by virtue of click chemistry using cheap and commercially available reagents. The ruthenium complexes were obtained by heating the Ru(PPh3)3Cl2 precursor and the tridentate NNN ligand in toluene under reflux for 2 hours, achieving yields of 82-87%. These complexes were fully characterized by means of NMR, FT-IR and high resolution ESI spectroscopy. The crystal structure of one of the complexes was determined. These complexes showed excellent activity and selectivity in the hydrogenation of ketones and aldehydes. DFT calculations show that complex 3 may react through an outer-sphere catalytic cycle rather than via an inner-sphere mechanism.
RESUMO
The limits to the supply of fossil resources and their ever increasing use forces us to think about future scenarios for fuels and chemicals. The platform chemical 5-hydroxymethyl-furfural (HMF) can be obtained from biomass in good yield and has the potential to be converted in just a few steps into a multitude of interesting products. Over the last 20 years, the conversion of HMF to 1-hydroxyhexane-2,5-dione (HHD) has been studied by several groups. It is possible to convert HMF into HHD by hydrogenation/hydrolytic ring opening reaction in aqueous phase using various heterogeneous and homogeneous catalysts. This review addresses both the state of the art of HHD synthesis, including mechanistic aspects of its formation, as well as the recent progress in the application of HHD as a building block for many useful chemicals including pyrroles, cyclopentanone derivatives and triols.
RESUMO
The amount of plastic waste is continuously increasing. Besides conventional recycling, one solution to deal with this problem could be to use this waste as a resource for novel materials. In this study, polyesters are hydrogenated to give polyether polyols by using in situ-generated Ru-Triphos catalysts in combination with Lewis acids. The choice of Lewis acid and its concentration relative to the ruthenium catalyst are found to determine the selectivity of the reaction. Monitoring of the molecular weight during the reaction confirms a sequential mechanism in which the diols that are formed by hydrogenation are etherified to the polyethers. To probe the applicability of this tandem hydrogenation etherification approach, a range of polyester substrates is investigated. The oligoether products that form in these reactions have the chain lengths that are appropriate for application in the adhesives and coatings industries. This strategy makes polyether polyols accessible that are otherwise difficult to obtain from conventional fossil-based feedstocks.
RESUMO
Catalytic isomerization of allylic alcohols in ethanol as a green solvent was achieved by using air and moisture stable cobalt (II) complexes in the absence of any additives. Under mild conditions, the cobalt PNP pincer complex substituted with phenyl groups on the phosphorus atoms appeared to be the most active. High rates were obtained at 120 °C, even though the addition of one equivalent of base increases the speed of the reaction drastically. Although some evidence was obtained supporting a dehydrogenation-hydrogenation mechanism, it was proven that this is not the major mechanism. Instead, the cobalt hydride complex formed by dehydrogenation of ethanol is capable of double-bond isomerization through alkene insertion-elimination.