Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38466933

RESUMO

OBJECTIVES: It is well-known that long-term osteoarthritis prognosis is not improved by corticosteroid treatments. Here we investigate what could underlie this phenomenon by measuring the short term corticosteroid response of OA-Mf. METHODS: We determined the genome-wide transcriptomic response to corticosteroids of end-stage osteoarthritic joint synovial macrophages (OA-Mf). This was compared with LPS-tolerized and ß-glucan-trained circulating blood monocyte-derived macrophage models. RESULTS: Upon corticosteroid stimulation, the trained and tolerized macrophages significantly alter the abundance of 201 and 257 RNA transcripts, respectively. By contrast, by the same criteria, OA-Mf have a very restricted corticosteroid response of only 12 RNA transcripts. Furthermore, while metalloproteinases 1, -2, -3 and -10 expression clearly distinguish OA-Mf from both the tolerized and trained macrophage models, OA-Mf Interleukin 1 (IL1), chemokine (CXCL) and cytokine (CCL) family member profiles resemble the tolerized macrophage model, with the exception that OA-Mf show high levels of CCL20. CONCLUSION: Terminal osteoarthritis joints therefore harbor macrophages with an inflammatory state that closely resembles the tolerized macrophage state and this is compounded by a weak corticosteroid response capacity that may explain the lack of positive long-term effects of corticosteroid treatment for osteoarthritis patients.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38216750

RESUMO

OBJECTIVES: Macrophages are key orchestrators of the osteoarthritis (OA)-associated inflammatory response. Macrophage phenotype is dependent on environmental cues like the inflammatory factor S100A8/A9. Here, we investigated how S100A9 exposure during monocyte-to-macrophage differentiation affects macrophage phenotype and function. METHODS: OA synovium cellular composition was determined using flow cytometry and multiplex immunohistochemistry. Healthy donor monocytes were differentiated towards M1- and M2-like macrophages in presence of S100A9. Macrophage markers were measured using flow cytometry and phagocytic activity was determined using pHrodo Red Zymosan A BioParticles. Gene expression was determined using qPCR. Protein secretion was measured using Luminex and ELISA. RESULTS: Macrophages were the dominant leucocyte subpopulation in OA synovium. They mainly presented with a M2-like phenotype, although the majority also expressed M1-like macrophage markers. Long-term exposure to S100A9 during monocyte-to-macrophage differentiation increased M2-like macrophage markers CD163 and CD206 in M1-like and M2-like differentiated cells. In addition, M1-like macrophage markers were increased in M1-like, but decreased in M2-like differentiated macrophages. In agreement with this mixed phenotype, S100A9 stimulation modestly increased expression and secretion of pro-inflammatory markers and catabolic enzymes, but also increased expression and secretion of anti-inflammatory/anabolic markers. In accordance with the upregulation of M2-like macrophage markers, S100A9 increased phagocytic activity. Finally, we indeed observed a strong association between S100A8 and S100A9 expression and the M2-like/M1-like macrophage ratio in end-stage OA synovium. CONCLUSION: Chronic S100A8/A9 exposure during monocyte-to-macrophage differentiation favours differentiation towards a M2-like macrophage phenotype. The properties of these cells could help explain the catabolic/anabolic dualism in established OA joints with low-grade inflammation.

3.
Rheumatology (Oxford) ; 63(4): 1180-1188, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37341635

RESUMO

OBJECTIVES: OA is characterized by cartilage degeneration and persistent pain. The majority of OA patients present with synovitis, which is associated with increased cartilage damage. Activated synovial macrophages are key contributors to joint destruction. Therefore, a marker that reflects the activation of these cells could be a valuable tool to characterize the destructive potential of synovitis and benefit monitoring of OA. Here, we aimed to investigate the use of CD64 (FcγRI) as a marker to characterize the damaging potential of synovitis in OA. METHODS: Synovial biopsies were obtained from end-stage OA patients that underwent joint replacement surgery. CD64 protein expression and localization was evaluated using immunohistochemistry and immunofluorescence and quantified using flow cytometry. qPCR was performed to measure the expression of FCGR1 and OA-related genes in synovial biopsies, and in primary chondrocytes and primary fibroblasts stimulated with OA conditioned medium (OAS-CM). RESULTS: Our data exposed a wide range of CD64 expression in OA synovium and showed positive correlations between FCGR1 and S100A8, S100A9, IL1B, IL6 and MMP1/2/3/9/13 expression. CD64 protein correlated with MMP1, MMP3, MMP9, MMP13 and S100A9. Furthermore, we observed that synovial CD64 protein levels in source tissue for OAS-CM significantly associated with the OAS-CM-induced expression of MMP1, MMP3 and especially ADAMTS4 in cultured fibroblasts, but not chondrocytes. CONCLUSION: Together, these results indicate that synovial CD64 expression is associated with the expression of proteolytic enzymes and inflammatory markers related to structural damage in OA. CD64 therefore holds promise as marker to characterize the damaging potential of synovitis.


Assuntos
Osteoartrite , Sinovite , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz , Osteoartrite/metabolismo , Sinovite/patologia , Calgranulina B/metabolismo , Membrana Sinovial/metabolismo
4.
Rheumatology (Oxford) ; 63(3): 608-618, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788083

RESUMO

Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.


Assuntos
Osteoartrite , Receptor 4 Toll-Like , Humanos , Inflamação , Transdução de Sinais , Alarminas
5.
Cell Rep ; 42(8): 113006, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37610870

RESUMO

Immune-suppressive effects of myeloid-derived suppressor cells (MDSCs) are well characterized during anti-tumor immunity. The complex mechanisms promoting MDSC development and their regulatory effects during autoimmune diseases are less understood. We demonstrate that the endogenous alarmin S100A8/A9 reprograms myeloid cells to a T cell suppressing phenotype during autoimmune arthritis. Treatment of myeloid precursors with S100-alarmins during differentiation induces MDSCs in a Toll-like receptor 4-dependent manner. Consequently, knockout of S100A8/A9 aggravates disease activity in collagen-induced arthritis due to a deficit of MDSCs in local lymph nodes, which could be corrected by adoptive transfer of S100-induced MDSCs. Blockade of MDSC function in vivo aggravates disease severity in arthritis. Therapeutic application of S100A8 induces MDSCs in vivo and suppresses the inflammatory phenotype of S100A9ko mice. Accordingly, the interplay of T cell-mediated autoimmunity with a defective innate immune regulation is crucial for autoimmune arthritis, which should be considered for future innovative therapeutic options.


Assuntos
Artrite , Calgranulina A , Calgranulina B , Células Supressoras Mieloides , Animais , Camundongos , Artrite/imunologia , Artrite/metabolismo , Artrite/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/imunologia , Modelos Animais de Doenças , Diferenciação Celular , Óxido Nítrico/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo
6.
Arthritis Res Ther ; 25(1): 158, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653557

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is one of the most prevalent and debilitating joint diseases worldwide. RA is characterized by synovial inflammation (synovitis), which is linked to the development of joint destruction. Magnetic resonance imaging and ultrasonography are widely being used to detect the presence and extent of synovitis. However, these techniques do not reveal the activation status of inflammatory cells such as macrophages that play a crucial role in synovitis and express CD64 (Fc gamma receptor (FcγR)I) which is considered as macrophage activation marker. OBJECTIVES: We aimed to investigate CD64 expression and its correlation with pro-inflammatory cytokines and pro-damaging factors in human-derived RA synovium. Furthermore, we aimed to set up a molecular imaging modality using a radiolabeled CD64-specific antibody as a novel imaging tracer that could be used to determine the extent and phenotype of synovitis using optical and nuclear imaging. METHODS: First, we investigated CD64 expression in synovium of early- and late-stage RA patients and studied its correlation with the expression of pro-inflammatory and tissue-damaging factors. Next, we conjugated an anti-CD64 antibody with IRDye 800CW and diethylenetriamine penta-acetic acid (DTPA; used for 111In labeling) and tested its binding on cultured THP1 cells, ex vivo RA synovium explants and its imaging potential in SCID mice implanted with human RA synovium explants obtained from RA patients who underwent total joint replacement. RESULTS: We showed that CD64 is expressed in synovium of early and late-stage RA patients and that FCGR1A/CD64 expression is strongly correlated with factors known to be involved in RA progression. Combined, this makes CD64 a useful marker for imaging the extent and phenotype of synovitis. We reported higher binding of the [111In]In-DTPA-IRDye 800CW anti-CD64 antibody to in vitro cultured THP1 monocytes and ex vivo RA synovium compared to isotype control. In human RA synovial explants implanted in SCID mice, the ratio of uptake of the antibody in synovium over blood was significantly higher when injected with anti-CD64 compared to isotype and injecting an excess of unlabeled antibody significantly reduced the antibody-binding associated signal, both indicating specific receptor binding. CONCLUSION: Taken together, we successfully developed an optical and nuclear imaging modality to detect CD64 in human RA synovium in vivo.


Assuntos
Artrite Reumatoide , Sinovite , Camundongos , Animais , Humanos , Camundongos SCID , Imagem Molecular , Sinovite/diagnóstico por imagem , Artrite Reumatoide/diagnóstico por imagem , Biomarcadores , Anticorpos , Isotipos de Imunoglobulinas , Ácido Pentético
7.
PeerJ ; 11: e15482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366428

RESUMO

Background: Osteoarthritis (OA) is a progressive joint disease and a major cause of chronic pain in adults. The prevalence of OA is higher in female patients, who tend to have worse OA outcomes, partially due to pain. The association between joint pain and OA pathology is often inconclusive. Preclinical research studies have largely overlooked sex as a potential determinant in joint pain during OA. This study aimed to investigate the role of sex in joint pain in the collagenase-induced OA (CiOA) model and its link with joint pathology. Methods: Multiple aspects of pain were evaluated during identically executed experiments of CiOA in male and female C57BL/6J mice. Cartilage damage, osteophyte formation, synovial thickness, and cellularity were assessed by histology on day 56. The association between pain and pathology was investigated, disaggregated by sex. Results: Differences in pain behavior between sexes were found in the majority of the evaluated pain methods. Females displayed lower weight bearing ability in the affected leg compared to males during the early phase of the disease, however, the pathology at the end stage was comparable between sexes. In the second cohort, males displayed increased mechanical sensitivity in the affected joint compared to females but also showed more cartilage damage at the end stage of the model. Within this cohort, gait analysis showed varied results. Males used the affected paw less often and displayed dynamic weight-bearing compensation in the early phase of the model. These differences were not observed in females. Other evaluated parameters displayed comparable gait behavior between males and females. A detailed analysis of individual mice revealed that seven out of 10 pain measurements highly correlated with OA histopathology in females (Pearson r range: 0.642-0.934), whereas in males this measurement was only two (Pearson r range: 0.645-0.748). Conclusion: Our data show that sex is a determinant in the link between pain-related behavior with OA features. Therefore, to accurately interpret pain data it is crucial to segregate data analysis by sex to draw the correct mechanistic conclusion.


Assuntos
Osteoartrite , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos C57BL , Osteoartrite/etiologia , Dor/etiologia , Artralgia/complicações , Marcha
8.
Rheumatology (Oxford) ; 62(1): 42-51, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35863051

RESUMO

Synovial macrophages are key mediators of OA pathology, and skewing of macrophage phenotype in favour of an M1-like phenotype is thought to underlie the chronicity of synovial inflammation in OA. Components of the metabolic syndrome (MetS), such as dyslipidaemia, can affect macrophage phenotype and function, which could explain the link between MetS and OA development. Recently published studies have provided novel insights into the different origins and heterogeneity of synovial macrophages. Considering these findings, we propose an important role for monocyte-derived macrophages in particular, as opposed to yolk-sac derived residential macrophages, in causing a pro-inflammatory phenotype shift. We will further explain how this can start even prior to synovial infiltration; in the circulation, monocytes can be trained by metabolic factors such as low-density lipoprotein to become extra responsive to chemokines and damage-associated molecular patterns. The concept of innate immune training has been widely studied and implicated in atherosclerosis pathology, but its involvement in OA remains uncharted territory. Finally, we evaluate the implications of these insights for targeted therapy directed to macrophages and metabolic factors.


Assuntos
Síndrome Metabólica , Osteoartrite , Humanos , Monócitos/metabolismo , Lipoproteínas LDL/metabolismo , Osteoartrite/metabolismo , Inflamação/metabolismo , Síndrome Metabólica/complicações , Fatores de Risco , Membrana Sinovial/metabolismo
9.
Cells ; 11(7)2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35406794

RESUMO

During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-ß's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-ß. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-ß-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-ß, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-ß-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-ß-induced expression of crucial hypertrophy factors in chondrocytes.


Assuntos
Condrócitos , Osteoartrite , Condrócitos/metabolismo , Humanos , Hipertrofia/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/genética , Fatores de Crescimento Transformadores/metabolismo
10.
Sci Rep ; 12(1): 3182, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210510

RESUMO

TGF-ß1 is an important growth factor to promote the differentiation of T helper 17 (Th17) and regulatory T cells (Treg). The potential of TGF-ß1 as therapeutic target in T cell-mediated diseases like rheumatoid arthritis (RA) is unclear. We investigated the effect of TGF-ß1 inhibition on murine Th17 differentiation in vitro, on human RA synovial explants ex vivo, and on the development of experimental arthritis in vivo. Murine splenocytes were differentiated into Th17 cells, and the effect of the TGF-ßRI inhibitor SB-505124 was studied. Synovial biopsies were cultured in the presence or absence of SB-505124. Experimental arthritis was induced in C57Bl6 mice and treated daily with SB-505124. Flow cytometry analysis was performed to measure different T cell subsets. Histological sections were analysed to determine joint inflammation and destruction. SB-505124 potently reduced murine Th17 differentiation by decreasing Il17a and Rorc gene expression and IL-17 protein production. SB-505124 significantly suppressed IL-6 production by synovial explants. In vivo, SB-505124 reduced Th17 numbers, while increased numbers of Tregs were observed. Despite this skewed Th17/Treg balance, SB-505124 treatment did not result in suppression of joint inflammation and destruction. Blocking TGF-ß1 signalling suppresses Th17 differentiation and improves the Th17/Treg balance. However, local SB-505124 treatment does not suppress experimental arthritis.


Assuntos
Artrite Experimental/metabolismo , Citocinas/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Benzodioxóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Imidazóis/farmacologia , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Piridinas/farmacologia , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Técnicas de Cultura de Tecidos/métodos
11.
Antioxidants (Basel) ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34829531

RESUMO

Osteoarthritis (OA) is a destructive disease of the joint with age and obesity being its most important risk factors. Around 50% of OA patients suffer from inflammation of the synovial joint capsule, which is characterized by increased abundance and activation of synovial macrophages that produce reactive oxygen species (ROS) via NADPH-oxidase 2 (NOX2). Both ROS and high blood levels of low-density lipoprotein (LDL) are implicated in OA pathophysiology, which may interact to form oxidized LDL (oxLDL) and thereby promote disease. Therefore, targeting NOX2 could be a viable treatment strategy for OA. Collagenase-induced OA (CiOA) was used to compare pathology between wild-type (WT) and Nox2 knockout (Nox2-/-) C57Bl/6 mice. Mice were either fed a standard diet or Western diet (WD) to study a possible interaction between NOX2-derived ROS and LDL. Synovial inflammation, cartilage damage and ectopic bone size were assessed on histology. Extracellular ROS production by macrophages was measured in vitro using the Amplex Red assay. Nox2-/- macrophages produced basal levels of ROS but were unable to increase ROS production in response to the alarmin S100A8 or the phorbol ester PMA. Interestingly, Nox2 deficiency reduced cartilage damage, synovial lining thickness and ectopic bone size, whereas these disease parameters were not affected by WD-feeding. These results suggest that NOX2-derived ROS are involved in CiOA development.

12.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360888

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-ß (TGF-ß) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-ß signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1ß and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-ß signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1ß was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.


Assuntos
Condrócitos/metabolismo , Condrócitos/patologia , Osteoartrite/metabolismo , Transdução de Sinais/genética , Proteína Smad2/química , Proteína Smad2/metabolismo , Proteína Smad3/química , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Hipertrofia/metabolismo , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/genética , Osteoartrite/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Domínios Proteicos/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/genética , Proteína Smad3/genética , Membrana Sinovial/metabolismo , Transfecção , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia
13.
Arthritis Res Ther ; 23(1): 216, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412663

RESUMO

BACKGROUND: Excessive osteoclast activity, which is strongly stimulated by pro-inflammatory mediators, results in bone and cartilage degeneration as central features of many arthritides. Levels of the alarmin S100A8/A9 and interleukin (IL)-1ß are both increased in arthritis patients and correlate with disease activity and progression of tissue erosion. We previously presented S100A8/A9 as a good biomarker for joint inflammation and arthritis pathology under circumstances of high IL-1 signaling in mice that lack the gene encoding IL-1 receptor antagonist (Il1rn-/- mice). Here, we investigated whether S100A8/A9 is also actively involved in the development of joint inflammation and both cartilage and bone pathology under these conditions by comparing Il1rn-/- mice with mice that have an additional deficiency for S100a9 (Il1rn-/-XS100a9-/-). METHODS: Il1rn-/-XS100a9-/- on a BALB/c background were obtained by crossing S100a9-/- mice and Il1rn-/- mice. Arthritis incidence and severity were macroscopically scored. Myeloid cell populations in the bone marrow and spleen were determined using flow cytometry. In vitro osteoclastogenesis of bone marrow cells was evaluated with TRAP staining. Microscopic joint inflammation, cartilage degeneration, and bone destruction were evaluated using histology of ankle joints of 12- and 20-week-old mice. RESULTS: Macroscopically scored arthritis severity was comparable between Il1rn-/- and Il1rn-/-XS100a9-/- mice. Inflammation, cartilage erosion, and bone erosion were clearly present in 12-week-old mice of both strains lacking Il1rn-/-, but not significantly different between Il1rn-/-XS100a9-/- and Il1rn-/-. Moreover, we observed that the numbers of neutrophils and monocytes were increased by the absence of Il1rn, which was affected by the absence of S100a9 only in the spleen but not in the bone marrow. In line with our other findings, the absence of S100a9 did not affect the osteoclastogenic potential of osteoclast precursors in the absence of Il1rn. Finally, in agreement with the findings in early arthritis development in 12-week-old mice, cartilage and bone erosion in 20-week-old mice was significantly higher in both Il1rn-/- strains, but the additional absence of S100a9 did not further affect tissue pathology. CONCLUSION: S100A8/A9 deficiency does not significantly affect inflammation and joint destruction in mice with high IL1ß signaling suggesting that S100A8/A9 is not essential for the development of arthritis under these conditions.


Assuntos
Artrite Experimental , Calgranulina A , Calgranulina B , Proteína Antagonista do Receptor de Interleucina 1 , Animais , Artrite Experimental/genética , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Humanos , Inflamação/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
14.
Rheumatology (Oxford) ; 60(3): 1042-1053, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410465

RESUMO

OA is a complex and highly prevalent degenerative disease affecting the whole joint, in which factors like genetic predisposition, gender, age, obesity and traumas contribute to joint destruction. ∼50-80% of OA patients develop synovitis. OA-associated risk factors contribute to joint instability and the release of cartilage matrix fragments, activating the synovium to release pro-inflammatory factors and catabolic enzymes in turn damaging the cartilage and creating a vicious circle. Currently, no cure is available for OA. Mesenchymal stromal cells (MSCs) have been tested in OA for their chondrogenic and anti-inflammatory properties. Interestingly, MSCs are most effective when administered during synovitis. This review focusses on the interplay between joint inflammation and the immunomodulation by MSCs in OA. We discuss the potential of MSCs to break the vicious circle of inflammation and describe current perspectives and challenges for clinical application of MSCs in treatment and prevention of OA, focussing on preventing post-traumatic OA.


Assuntos
Imunomodulação , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite/terapia , Sinovite/terapia , Humanos , Inflamação/imunologia , Osteoartrite/imunologia , Sinovite/imunologia
15.
Rheumatology (Oxford) ; 60(4): 1974-1983, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33197269

RESUMO

OBJECTIVE: High levels of IL-22 are present in serum and synovial fluid of patients with RA. As both pro- and anti-inflammatory roles for IL-22 have been described in studies using animal models of RA, its exact function in arthritis remains poorly defined. With this study we aimed to further unravel the mechanism by which IL-22 exerts its effects and to decipher its therapeutic potential by overexpression of IL-22 either locally or systemically during experimental arthritis. METHODS: CIA was induced in DBA-1 mice by immunization and booster injection with type II collagen (col II). Before arthritis onset, IL-22 was overexpressed either locally by intra-articular injection or systemically by i.v. injection using an adenoviral vector and clinical arthritis was scored for a period of 10 days. Subsequently, joints were isolated for histological analysis of arthritis severity and mRNA and protein expression of various inflammatory mediators was determined in the synovium, spleen and serum. RESULTS: Local IL-22 overexpression did not alter arthritis pathology, whereas systemic overexpression of IL-22 potently reduced disease incidence, severity and pathology during CIA. Mice systemically overexpressing IL-22 showed strongly reduced serum cytokine levels of TNF-α and macrophage inflammatory protein 1α that correlated significantly with the enhanced expression of the negative immune regulator SOCS3 in the spleen. CONCLUSION: With this study, we revealed clear anti-inflammatory effects of systemic IL-22 overexpression during CIA. Additionally, we are the first to show that the protective effect of systemic IL-22 during experimental arthritis is likely orchestrated via upregulation of the negative regulator SOCS3.


Assuntos
Artrite Experimental/terapia , Interleucinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Modelos Animais de Doenças , Feminino , Articulações/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Reação em Cadeia da Polimerase em Tempo Real , Proteína 3 Supressora da Sinalização de Citocinas/imunologia , Interleucina 22
16.
J Immunol Res ; 2020: 9690832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964059

RESUMO

OBJECTIVE: To investigate the role of TAM receptors in rheumatoid arthritis (RA) by determining synovial tissue TAM receptor expression, synovial fluid levels of soluble TAM receptors, and the relationship between soluble TAM receptors, joint inflammation and disease activity. METHODS: TAM receptor expression was determined by immunohistochemistry on the synovium from RA and osteoarthritis (OA) patients. Soluble (s) Tyro3, sAxl, sMer, and their ligand Gas6 were measured by ELISA in the synovial fluid of RA (n = 28) and OA (n = 12) patients and cytokine levels by multiplex immunoassay in RA samples. Correlation analyses were performed among sTAM receptors with local cytokine levels; systemic disease parameters like erythrocyte sedimentation rate (ESR), rheumatoid factor (RF), and anticyclic citrullinated peptide antibodies (ACPA); and disease activity scores (DAS28-ESR) in RA patients. RESULTS: TAM receptors were expressed on different locations in the synovial tissue (lining, sublining, and blood vessels), and a similar expression pattern was observed in RA and OA patients. Synovial fluid sTyro3 and sMer were significantly enhanced in RA compared to OA patients, whereas no significant differences in sAxl and Gas6 levels were found. In RA samples, sTyro3 levels, but not sMer, correlated positively with proinflammatory local cytokines and the systemic factor erythrocyte sedimentation rate. Moreover, stratification analysis showed high sTyro3 levels positively correlated with higher DAS28-ESR and in RF and ACPA double positive RA patients. CONCLUSION: sTyro3 in the synovial fluid of RA patients correlates with local inflammatory molecules and systemic disease activity. These findings suggest that the reduced negative control of cell activation by TAM receptors due to their shedding in the synovial fluid, mainly sTyro3, favoring joint inflammation in RA patients.


Assuntos
Artrite Reumatoide/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Líquido Sinovial/metabolismo , Adulto , Idoso , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/etiologia , Biomarcadores , Citocinas/metabolismo , Suscetibilidade a Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Membrana Sinovial/metabolismo
17.
Arthritis Res Ther ; 22(1): 199, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854769

RESUMO

BACKGROUND: Synovitis-associated pain is mediated by inflammatory factors that may include S100A8/9, which is able to stimulate nociceptive neurons via Toll-like receptor 4. In this study, we investigated the role of S100A9 in pain response during acute synovitis. METHODS: Acute synovitis was induced by streptococcal cell wall (SCW) injection in the knee joint of C57Bl/6 (WT) and S100A9-/- mice. The expression of S100A8/A9 was determined in serum and synovium by ELISA and immunohistochemistry. Inflammation was investigated by 99mTc accumulation, synovial cytokine release, and histology at days 1, 2, and 7. To assess pain, weight distribution, gait analysis, and mechanical allodynia were monitored. Activation markers in afferent neurons were determined by qPCR and immunohistochemistry in the dorsal root ganglia (DRG). Differences between groups were tested using a one-way or two-way analysis of variance (ANOVA). Differences in histology were tested with a non-parametric Mann-Whitney U test. p values lower than 0.05 were considered significant. RESULTS: Intra-articular SCW injection resulted in increased synovial expression and serum levels of S100A8/A9 at day 1. These increased levels, however, did not contribute to the development of inflammation, since this was equal in S100A9-/- mice. WT mice showed a significantly decreased percentage of weight bearing on the SCW hind paw on day 1, while S100A9-/- mice showed no reduction. Gait analysis showed increased "limping" behavior in WT, but not S100A9-/- mice. Mechanical allodynia was observed but not different between WT and S100A9-/- when measuring paw withdrawal threshold. The gene expression of neuron activation markers NAV1.7, ATF3, and GAP43 in DRG was significantly increased in arthritic WT mice at day 1 but not in S100A9-/- mice. CONCLUSIONS: S100A8/9, released from the synovium upon inflammation, is an important mediator of pain response in the knee during the acute phase of inflammation.


Assuntos
Dor Aguda , Artrite Experimental , Sinovite , Alarminas , Animais , Artrite Experimental/genética , Calgranulina A/genética , Calgranulina B/genética , Camundongos , Sinovite/genética
18.
PLoS One ; 15(7): e0236508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726333

RESUMO

Extracellular vesicles (EVs) are cell membrane-derived phospholipid bilayer nanostructures that contain bioactive proteins, enzymes, lipids and polymers of nucleotides. They play a role in intercellular communication and are present in body fluids. EVs can be isolated by methods like ultracentrifugation (UC), polyethylene-glycol-precipitation (PEG) or size exclusion chromatography (SEC). The co-presence of immunoglobulins (Ig) in EV samples isolated from plasma (pEVs) is often reported and this may influence the assessment of the biological function and phenotype of EVs in bio- and immunoassay. Here, we studied the presence of an Ig-based therapeutic (etanercept) in pEV samples isolated from rheumatoid arthritis (RA) patients and improved the isolation method to obtain purer pEVs. From plasma of etanercept (Tumor-necrosis-factor (TNF)-α antibodies)-treated RA patients pEVs were isolated by either UC, PEG or SEC. SEC isolated pEVs showed the highest particle-to-protein ratio. Strong TNF-α inhibition determined in a TNF-α sensitive reporter assay was observed by pEVs isolated by UC and PEG, and to a lesser extent by SEC, suggesting the presence of functional etanercept. SEC isolation of etanercept or labelled immunoglobulin G (IgG) showed co-isolation of these antibodies in the pEV fraction in the presence of plasma or a high protein (albumin) concentration. To minimize the presence of etanercept or immunoglobulins, we extended SEC (eSEC) column length from 56mm to 222mm (total stacking volume unchanged). No effect on the amount of isolated pEVs was observed while protein and IgG content were markedly reduced (90%). Next, from six etanercept- treated RA patients, pEVs were isolated on a eSEC or standard SEC column, in parallel. TNF-α inhibition was again observed in pEVs isolated by conventional SEC but not by eSEC. To confirm the purer pEVs isolated by eSEC the basal IL-8 promoter activation in human monocytes was determined and in 4 out of 5 SEC isolated pEVs activation was observed while eSEC isolated pEVs did not. This study shows that extended SEC columns yielded pEVs without detectable biologicals and with low protein and IgG levels. This isolation method will improve the characterization of pEVs as potential biomarkers and mediators of disease.


Assuntos
Produtos Biológicos/sangue , Proteínas Sanguíneas/análise , Vesículas Extracelulares/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Cromatografia em Gel , Etanercepte/sangue , Etanercepte/uso terapêutico , Vesículas Extracelulares/química , Humanos , Imunoglobulina G/análise , Interleucina-8/genética , Regiões Promotoras Genéticas , Ativação Transcricional , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
19.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471111

RESUMO

Recently, it was shown that interleukin-1ß (IL-1ß) has diverse stimulatory effects on different murine long bone marrow osteoclast precursors (OCPs) in vitro. In this study, interleukin-1 receptor antagonist deficient (Il1rn-/-) and wild-type (WT) mice were compared to investigate the effects of enhanced IL-1 signaling on the composition of OCPs in long bone, calvaria, vertebra, and jaw. Bone marrow cells were isolated from these sites and the percentage of early blast (CD31hi Ly-6C-), myeloid blast (CD31+ Ly-6C+), and monocyte (CD31- Ly-6Chi) OCPs was assessed by flow cytometry. At the time-point of cell isolation, Il1rn-/- mice showed no inflammation or bone destruction yet as determined by histology and microcomputed tomography. However, Il1rn-/- mice had an approximately two-fold higher percentage of OCPs in long bone and jaw marrow compared to WT. Conversely, vertebrae and calvaria marrow contained a similar composition of OCPs in both strains. Bone marrow cells were cultured with macrophage colony stimulating factor (M-CSF) and receptor of NfκB ligand (RANKL) on bone slices to assess osteoclastogenesis and on calcium phosphate-coated plates to analyze mineral dissolution. Deletion of Il1rn increased osteoclastogenesis from long bone, calvaria, and jaw marrows, and all Il1rn-/- cultures showed increased mineral dissolution compared to WT. However, osteoclast markers increased exclusively in Il1rn-/- osteoclasts from long bone and jaw. Collectively, these findings indicate that a lack of IL-1RA increases the numbers of OCPs in vivo, particularly in long bone and jaw, where rheumatoid arthritis and periodontitis develop. Thus, increased bone loss at these sites may be triggered by a larger pool of OCPs due to the disruption of IL-1 inhibitors.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/deficiência , Arcada Osseodentária/citologia , Osteoclastos/citologia , Animais , Biomarcadores/metabolismo , Fosfatos de Cálcio/metabolismo , Contagem de Células , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Arcada Osseodentária/diagnóstico por imagem , Camundongos Endogâmicos BALB C , Minerais/metabolismo , Monócitos/citologia , Crânio/citologia , Microtomografia por Raio-X
20.
J Neurointerv Surg ; 12(11): 1117-1121, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32332055

RESUMO

BACKGROUND: Inflammation-related factors might give further insight into the pathophysiology of vessel wall inflammation and intracranial aneurysm (IA) rupture. One of these factors is the protein complex S100A8/A9, which is released by neutrophils, monocytes, and activated macrophages and is known for its role in cardiovascular disease. OBJECTIVE: To determine if venous S100A8/A9 levels in patients with a ruptured IA (rIA) or unruptured IA (uIA) are elevated compared with a control group. Second, to assess differences between venous and intra-aneurysmal S100A8/A9 levels of rIA and uIA patients. METHODS: A prospective case study was performed between June 2016 and May 2017 in patients harboring a ruptured or unruptured saccular IA. Primary outcome measures were individual S100A8/A9 serum concentrations as measured in venous and intra-aneurysmal blood samples during endovascular treatment. Venous serum S100A8/A9 concentrations from a healthy control group served as a reference. RESULTS: We included 16 patients with either a rIA or uIA and 47 healthy controls. Venous S100A8/A9 concentrations were higher in aneurysm patients (rIA and uIA) than those of healthy controls (P≤0.001). S100A8/A9 concentrations were higher in intra-aneurysmal samples than in venous samples of rIA patients (P=0.011). This difference was not found in uIA patients (P=0.054). Intra-aneurysmal S100A8/A9 levels were higher in rIAs than in uIAs (P=0.04). CONCLUSIONS: Venous S100A8/A9 levels are elevated in patients with both rIAs and uIAs compared with healthy controls and likely represents aneurysm wall inflammation. S100A8/A9 causes macrophage-induced inflammation and degeneration of the vessel wall which might explain higher intra-aneurysmal S100A8/A9 levels found in rIAs than in uIAs.


Assuntos
Aneurisma Roto/sangue , Calgranulina A/sangue , Calgranulina B/sangue , Mediadores da Inflamação/sangue , Aneurisma Intracraniano/sangue , Adulto , Idoso , Aneurisma Roto/diagnóstico , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Aneurisma Intracraniano/diagnóstico , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA