Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 153: 114-121, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931890

RESUMO

BACKGROUND AND PURPOSE: A wide variation of MRI systems is a challenge in multicenter imaging biomarker studies as it adds variation in quantitative MRI values. The aim of this study was to design and test a quality assurance (QA) framework based on phantom measurements, for the quantitative MRI protocols of a multicenter imaging biomarker trial of locally advanced cervical cancer. MATERIALS AND METHODS: Fifteen institutes participated (five 1.5 T and ten 3 T scanners). Each institute optimized protocols for T2, diffusion-weighted imaging, T1, and dynamic contrast-enhanced (DCE-)MRI according to system possibilities, institutional preferences and study-specific constraints. Calibration phantoms with known values were used for validation. Benchmark protocols, similar on all systems, were used to investigate whether differences resulted from variations in institutional protocols or from system variations. Bias, repeatability (%RC), and reproducibility (%RDC) were determined. Ratios were used for T2 and T1 values. RESULTS: The institutional protocols showed a range in bias of 0.88-0.98 for T2 (median %RC = 1%; %RDC = 12%), -0.007 to 0.029 × 10-3 mm2/s for the apparent diffusion coefficient (median %RC = 3%; %RDC = 18%), and 0.39-1.29 for T1 (median %RC = 1%; %RDC = 33%). For DCE a nonlinear vendor-specific relation was observed between measured and true concentrations with magnitude data, whereas the relation was linear when phase data was used. CONCLUSION: We designed a QA framework for quantitative MRI protocols and demonstrated for a multicenter trial for cervical cancer that measurement of consistent T2 and apparent diffusion coefficient values is feasible despite protocol differences. For DCE-MRI and T1 mapping with the variable flip angle method, this was more challenging.


Assuntos
Neoplasias do Colo do Útero , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes , Neoplasias do Colo do Útero/diagnóstico por imagem
2.
NMR Biomed ; 30(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28543640

RESUMO

Electric properties tomography (EPT) derives the patient's electric properties, i.e. conductivity and permittivity, using standard magnetic resonance (MR) systems and standard MR sequences. Thus, EPT does not apply externally mounted electrodes, currents or radiofrequency (RF) probes, as is the case in competing techniques. EPT is quantitative MR, i.e. it yields absolute values of conductivity and permittivity. This review summarizes the physical equations underlying EPT, the corresponding basic and advanced reconstruction techniques and practical numerical aspects to realize these reconstruction techniques. MR sequences which map the field information required for EPT are outlined, and experiments to validate EPT in phantom and in vivo studies are described. Furthermore, the review describes the clinical findings which have been obtained with EPT so far, and attempts to understand the physiologic background of these findings.


Assuntos
Condutividade Elétrica , Tomografia , Animais , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA