Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
World Neurosurg X ; 17: 100143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36341134

RESUMO

Objective: The Woven EndoBridge (WEB) device (MicroVention, Tustin, CA) has extended the treatment of cerebral aneurysms. Despite the fact that the WEB device has shown promising clinical results, little is known about the caused intra-aneurysmal flow alterations. Here we present our clinical experience with the WEB, including examining various syngo iFlow (Siemens AG, Erlangen, Germany) parameters to predict aneurysm occlusion. Methods: We reviewed the data from patients with unruptured cerebral aneurysms treated with a WEB device between 2016 and 2020. Aneurysm occlusion and complications were assessed. Furthermore, different quantitative criteria were evaluated using syngo iFlow after digital subtraction angiography. Results: A total of 26 patients hosting 26 cerebral aneurysms met the inclusion criteria. Follow-up was available for 21 patients, with a mean of 7.3 ± 6.3 months. A total of 71.4% (n = 15) of the aneurysms included were located in the anterior and 28.6% (n = 6) in the posterior circulation. Adequate aneurysm occlusion was achieved in 85.7% (n = 18). The iFlow parameters for reduced aneurysm outflow (ID-R) differed significantly from the parameters for reduced inflow (PI-R and PI-D) (P < 0.001). The parameters did not differ significantly between adequately and insufficiently occluded aneurysms. Only a trend towards a lower ID-R of insufficiently occluded aneurysms was observed (P = 0.063), indicating a potential predictive value for insufficient aneurysmal outflow. There was no treatment-related morbidity or mortality. Conclusions: The applied syngo iFlow parameters confirmed that flow changes induced by the WEB device significantly affect outflow compared to inflow and have potential predictive value for adequate aneurysm occlusion.

2.
Ophthalmol Sci ; 2(3): 100161, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36245761

RESUMO

Purpose: To assess 3-dimensional surface shape patterns of the optic nerve head (ONH) and peripapillary retinal nerve fiber layer (RNFL) in glaucoma with unsupervised artificial intelligence (AI). Design: Retrospective study. Participants: Patients with OCT scans obtained between 2016 and 2020 from Massachusetts Eye and Ear. Methods: The first reliable Cirrus (Carl Zeiss Meditec, Inc) ONH OCT scans from each eye were selected. The ONH and RNFL surface shape was represented by the vertical positions of the inner limiting membrane (ILM) relative to the lowest ILM vertical position in each eye. Nonnegative matrix factorization was applied to determine the ONH and RNFL surface shape patterns, which then were correlated with OCT and visual field (VF) loss parameters and subsequent VF loss rate. We tested whether using ONH and RNFL surface shape patterns improved the prediction accuracy for associated VF loss and subsequent VF loss rates measured by adjusted r 2 and Bayesian information criterion (BIC) difference compared with using established OCT parameters alone. Main Outcome Measures: Optic nerve head and RNFL surface shape patterns and prediction of the associated VF loss and subsequent VF loss rates. Results: We determined 14 ONH and RNFL surface shape patterns using 9854 OCT scans from 5912 participants. Worse mean deviation (MD) was most correlated (r = 0.29 and r = 0.24, Pearson correlation; each P < 0.001) with lower coefficients of patterns 10 and 12 representing inferior and superior para-ONH nerve thinning, respectively. Worse MD was associated most with higher coefficients of patterns 5, 4, and 9 (r = -0.16, r = -0.13, and r = -0.13, respectively), representing higher peripheral ONH and RNFL surfaces. In addition to established ONH summary parameters and 12-clock-hour RNFL thickness, using ONH and RNFL surface patterns improved (BIC decrease: 182, 144, and 101, respectively; BIC decrease ≥ 6; strong model improvement) the prediction of accompanied MD (r 2 from 0.32 to 0.37), superior (r 2 from 0.27 to 0.31), and inferior (r 2 from 0.17 to 0.21) paracentral loss and improved (BIC decrease: 8 and 8, respectively) the prediction of subsequent VF MD loss rates (r 2 from 0 to 0.13) and inferior paracentral loss rates (r 2 from 0 to 0.16). Conclusions: The ONH and RNFL surface shape patterns quantified by unsupervised AI techniques improved the structure-function relationship and subsequent VF loss rate prediction.

3.
JHEP Rep ; 4(11): 100575, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36204707

RESUMO

Background & Aims: Non-invasive stratification of the liver decompensation risk remains unmet in people with compensated cirrhosis. This study aimed to develop a non-invasive tool (NIT) to predict hepatic decompensation. Methods: This retrospective study recruited 689 people with compensated cirrhosis (median age, 54 years; 441 men) from 5 centres from January 2016 to June 2020. Baseline abdominal computed tomography (CT), clinical features, and liver stiffness were collected, and then the first decompensation was registered during the follow-up. The spleen-based model was designed for predicting decompensation based on a deep learning segmentation network to generate the spleen volume and least absolute shrinkage and selection operator (LASSO)-Cox. The spleen-based model was trained on the training cohort of 282 individuals (Institutions I-III) and was validated in 2 external validation cohorts (97 and 310 individuals from Institutions IV and V, respectively) and compared with the conventional serum-based models and the Baveno VII criteria. Results: The decompensation rate at 3 years was 23%, with a 37.6-month median (IQR 21.1-52.1 months) follow-up. The proposed model showed good performance in predicting decompensation (C-index ≥0.84) and outperformed the serum-based models (C-index comparison test p <0.05) in both the training and validation cohorts. The hazard ratio (HR) for decompensation in individuals with high risk was 7.3 (95% CI 4.2-12.8) in the training and 5.8 (95% CI 3.9-8.6) in the validation (log-rank test, p <0.05) cohorts. The low-risk group had a negligible 3-year decompensation risk (≤1%), and the model had a competitive performance compared with the Baveno VII criteria. Conclusions: This spleen-based model provides a non-invasive and user-friendly method to help predict decompensation in people with compensated cirrhosis in diverse healthcare settings where liver stiffness is not available. Lay summary: People with compensated cirrhosis with larger spleen volume would have a higher risk of decompensation. We developed a spleen-based model and validated it in external validation cohorts. The proposed model might help predict hepatic decompensation in people with compensated cirrhosis when invasive tools are unavailable.

5.
JACC Case Rep ; 4(13): 780-786, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35818605

RESUMO

Intracardiac echocardiography (ICE) has historically had limited utility in complex structural interventions. Newer 3-dimensional ICE catheters have enhanced imaging and real-time functionality. We present a novel case of mitral valve transcatheter edge-to-edge repair where transesophageal imaging was limited by massive hiatal hernia and where complementary 3D ICE imaging enabled procedural success. (Level of Difficulty: Intermediate.).

6.
JACC Case Rep ; 4(6): 336-342, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495559

RESUMO

Valve-in-valve transcatheter aortic valve replacement for failing surgical bioprosthetic valves becomes troublesome if a stiff vascular prosthesis replaces the ascending aorta. We report the off-label use of a new transcatheter aortic valve for treatment of a patient with a bioprosthetic valve with central regurgitation, a horizontal aorta, and kinking of the aortic prosthesis. (Level of Difficulty: Intermediate.).

7.
JACC Case Rep ; 4(4): 241-246, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35199025

RESUMO

We present a unique case of a paravalvular leak through a periannular channel around a bioprosthetic mitral valve. The role of multimodality imaging, in addition to novel technology, helped uncover the complex course of the jet, including its origin and direction, which translated into excellent procedural success. (Level of Difficulty: Advanced.).

8.
JACC CardioOncol ; 3(1): 1-16, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34396303

RESUMO

The subspecialty of cardio-oncology aims to reduce cardiovascular morbidity and mortality in patients with cancer or following cancer treatment. Cancer therapy can lead to a variety of cardiovascular complications, including left ventricular systolic dysfunction, pericardial disease, and valvular heart disease. Echocardiography is a key diagnostic imaging tool in the diagnosis and surveillance for many of these complications. The baseline assessment and subsequent surveillance of patients undergoing treatment with anthracyclines and/or human epidermal growth factor receptor (HER) 2-positive targeted treatment (e.g., trastuzumab and pertuzumab) form a significant proportion of cardio-oncology patients undergoing echocardiography. This guideline from the British Society of Echocardiography and British Cardio-Oncology Society outlines a protocol for baseline and surveillance echocardiography of patients undergoing treatment with anthracyclines and/or trastuzumab. The methodology for acquisition of images and the advantages and disadvantages of techniques are discussed. Echocardiographic definitions for considering cancer therapeutics-related cardiac dysfunction are also presented.

9.
JACC CardioOncol ; 3(2): 191-200, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34396324

RESUMO

Diagnosis of acute and late cardiotoxicity from cancer therapeutics has become increasingly important as the scope of cardio-oncology increases exponentially, both in terms of the number of people affected and the types of therapies it encompasses. Cardiac magnetic resonance (CMR) is a tool that can offer unparalleled diagnostic information compared with other imaging modalities, but its utilization is often delayed, at the expense of patient care, due to the need for insurance pre-authorization. This paper highlights situations in which CMR is preferred as the diagnostic modality and provides examples of diagnoses more likely to be approved by insurance companies. It also provides specific cardio-oncology diagnoses or questions to help the clinical cardio-oncologist navigate the pre-authorization process.

10.
JACC Case Rep ; 3(6): 966-970, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34317667

RESUMO

A 52-year-old man with acute peritonitis developed severely decreased left ventricular (LV) ejection fraction. Multimodal imaging allowed the diagnosis of sepsis-related myocardial calcification. Moreover, 2-dimensional speckle tracking echocardiography allowed a better understanding of LV dysfunction and confirmed the hypothesis that regional LV dysfunction is in accordance with the localization of calcifications. (Level of Difficulty: Intermediate.).

11.
JTCVS Tech ; 7: 309-321, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34318279

RESUMO

BACKGROUND: There has been an increasing trend toward pulmonary segmentectomies to treat early-stage lung cancer, small intrapulmonary metastases, and localized benign pathology. A complete preoperative understanding of pulmonary anatomy is essential for accurate surgical planning and case selection. Identifying intersegmental divisions is extremely difficult when performed on computed tomography. For the preoperative planning of segmentectomies, virtual reality (VR) and artificial intelligence could allow 3-dimensional visualization of the complex anatomy of pulmonary segmental divisions, vascular arborization, and bronchial anatomy. This technology can be applied by surgeons preoperatively to gain better insight into a patient's anatomy for planning segmentectomy. METHODS: In this prospective observational pilot study, we aim to assess and demonstrate the technical feasibility and clinical applicability of the first dedicated artificial intelligence-based and immersive 3-dimensional-VR platform (PulmoVR; jointly developed and manufactured by Department of Cardiothoracic Surgery [Erasmus Medical Center, Rotterdam, The Netherlands], MedicalVR [Amsterdam, The Netherlands], EVOCS Medical Image Communication [Fysicon BV, Oss, The Netherlands], and Thirona [Nijmegen, The Netherlands]) for preoperative planning of video-assisted thoracoscopic segmentectomies. RESULTS: A total of 10 eligible patients for segmentectomy were included in this study after referral through the institutional thoracic oncology multidisciplinary team. PulmoVR was successfully applied as a supplementary imaging tool to perform video-assisted thoracoscopic segmentectomies. In 40% of the cases, the surgical strategy was adjusted due to the 3-dimensional-VR-based evaluation of anatomy. This underlines the potential benefit of additional VR-guided planning of segmentectomy for both surgeon and patient. CONCLUSIONS: Our study demonstrates the successful development and clinical application of the first dedicated artificial intelligence and VR platform for the planning of pulmonary segmentectomy. This is the first study that shows an immersive virtual reality-based application for preoperative planning of segmentectomy to the best of our knowledge.

12.
JTCVS Tech ; 7: 269-277, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34100000

RESUMO

OBJECTIVES: To investigate how virtual reality (VR) imaging impacts decision-making in atrioventricular valve surgery. METHODS: This was a single-center retrospective study involving 15 children and adolescents, median age 6 years (range, 0.33-16) requiring surgical repair of the atrioventricular valves between the years 2016 and 2019. The patients' preoperative 3-dimesnional (3D) echocardiographic data were used to create 3D visualization in a VR application. Five pediatric cardiothoracic surgeons completed a questionnaire formulated to compare their surgical decisions regarding the cases after reviewing conventionally presented 2-dimesnional and 3D echocardiographic images and again after visualization of 3D echocardiograms using the VR platform. Finally, intraoperative findings were shared with surgeons to confirm assessment of the pathology. RESULTS: In 67% of cases presented with VR, surgeons reported having "more" or "much more" confidence in their understanding of each patient's pathology and their surgical approach. In all but one case, surgeons were at least as confident after reviewing the VR compared with standard imaging. The case where surgeons reported to be least confident on VR had the worst technical quality of data used. After viewing patient cases on VR, surgeons reported that they would have made minor modifications to surgical approach in 53% and major modifications in 7% of cases. CONCLUSIONS: The main impact of viewing imaging on VR is the improved clarity of the anatomical structures. Surgeons reported that this would have impacted the surgical approach in the majority of cases. Poor-quality 3D echocardiographic data were associated with a negative impact of VR visualization; thus. quality assessment of imaging is necessary before projecting in a VR format.

13.
World Neurosurg X ; 11: 100102, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33898969

RESUMO

BACKGROUND: In neurosurgery, it is important to inspect the spatial correspondence between the preoperative medical image (virtual space), and the intraoperative findings (real space) to improve the safety of the surgery. Navigation systems and related modalities have been reported as methods for matching this correspondence. However, because of the influence of the brain shift accompanying craniotomy, registration accuracy is reduced. In the present study, to overcome these issues, we developed a spatially accurate registration method of medical fusion 3-dimensional computer graphics and the intraoperative brain surface photograph, and its registration accuracy was measured. METHODS: The subjects included 16 patients with glioma. Nonrigid registration using the landmarks and thin-plate spline methods was performed for the fusion 3-dimensional computer graphics and the intraoperative brain surface photograph, termed mixed-reality computer graphics. Regarding the registration accuracy measurement, the target registration error was measured by two neurosurgeons, with 10 points for each case at the midpoint of the landmarks. RESULTS: The number of target registration error measurement points was 160 in the 16 cases. The target registration error was 0.72 ± 0.04 mm. Aligning the intraoperative brain surface photograph and the fusion 3-dimensional computer graphics required ∼10 minutes on average. The average number of landmarks used for alignment was 24.6. CONCLUSIONS: Mixed-reality computer graphics enabled highly precise spatial alignment between the real space and virtual space. Mixed-reality computer graphics have the potential to improve the safety of the surgery by allowing complementary observation of brain surface photographs and fusion 3-dimensional computer graphics.

14.
Ophthalmol Sci ; 1(4): 100060, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36246938

RESUMO

Purpose: Retinal toxicity resulting from hydroxychloroquine use manifests photoreceptor loss and disruption of the ellipsoid zone (EZ) reflectivity band detectable on spectral-domain (SD) OCT imaging. This study investigated whether an automatic deep learning-based algorithm can detect and quantitate EZ loss on SD OCT images with an accuracy comparable with that of human annotations. Design: Retrospective analysis of data acquired in a prospective, single-center, case-control study. Participants: Eighty-five patients (168 eyes) who were long-term hydroxychloroquine users (average exposure time, 14 ± 7.2 years). Methods: A mask region-based convolutional neural network (M-RCNN) was implemented and trained on individual OCT B-scans. Scan-by-scan detections were aggregated to produce an en face map of EZ loss per 3-dimensional SD OCT volume image. To improve the accuracy and robustness of the EZ loss map, a dual network architecture was proposed that learns to detect EZ loss in parallel using horizontal (horizontal mask region-based convolutional neural network [M-RCNNH]) and vertical (vertical mask region-based convolutional neural network [M-RCNNV]) B-scans independently. To quantify accuracy, 10-fold cross-validation was performed. Main Outcome Measures: Precision, recall, intersection over union (IOU), F1-score metrics, and measured total EZ loss area were compared against human grader annotations and with the determination of toxicity based on the recommended screening guidelines. Results: The combined projection network demonstrated the best overall performance: precision, 0.90 ± 0.09; recall, 0.88 ± 0.08; and F1 score, 0.89 ± 0.07. The combined model performed superiorly to the M-RCNNH only model (precision, 0.79 ± 0.17; recall, 0.96 ± 0.04; IOU, 0.78 ± 0.15; and F1 score, 0.86 ± 0.12) and M-RCNNV only model (precision, 0.71 ± 0.21; recall, 0.94 ± 0.06; IOU, 0.69 ± 0.21; and F1 score, 0.79 ± 0.16). The accuracy was comparable with the variability of human experts: precision, 0.85 ± 0.09; recall, 0.98 ± 0.01; IOU, 0.82 ± 0.12; and F1 score, 0.91 ± 0.06. Automatically generated en face EZ loss maps provide quantitative SD OCT metrics for accurate toxicity determination combined with other functional testing. Conclusions: The algorithm can provide a fast, objective, automatic method for measuring areas with EZ loss and can serve as a quantitative assistance tool to screen patients for the presence and extent of toxicity.

15.
JACC Basic Transl Sci ; 5(7): 685-695, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760856

RESUMO

Paclitaxel drug-coated balloons (DCBs) reduce restenosis, but their overall safety has recently raised concerns. This study hypothesized that DCBs could lessen inflammation and reduce plaque progression. Using 25 rabbits with cholesterol feeding- and balloon injury-induced lesions, DCB-percutaneous transluminal angioplasty (PTA), plain PTA, or sham-PTA (balloon insertion without inflation) was investigated using serial intravascular near-infrared fluorescence-optical coherence tomography and serial intravascular ultrasound. In these experiments, DCB-PTA reduced inflammation and plaque burden in nonobstructive lesions compared with PTA or sham-PTA. These findings indicated the potential for DCBs to serve safely as regional anti-atherosclerosis therapy.

16.
J Adv Res ; 24: 529-543, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32637173

RESUMO

Corneal dystrophies are a group of genetically inherited disorders with mutations in the TGFBI gene affecting the Bowman's membrane and the corneal stroma. The mutant TGFBIp is highly aggregation-prone and is deposited in the cornea. Depending on the type of mutation the protein deposits may vary (amyloid, amorphous powdery aggregate or a mixed form of both), making the cornea opaque and thereby decreases visual acuity. The aggregation of the mutant protein is found to be specific with a unique aggregation mechanism distinct to the cornea. The proteolytic processing of the mutant protein is reported to be different compared to the WT protein. The proteolytic processing of mutant protein gives rise to highly amyloidogenic peptide fragments. The current treatment option, available for patients, is tissue replacement surgery that is associated with high recurrence rates. The clinical need for a simple treatment option for corneal dystrophy patients has become highly essential either to prevent the protein aggregation or to dissolve the preformed aggregates. Here, we report the screening of 2500 compounds from the Maybridge RO3 fragment library using weak affinity chromatography (WAC). The primary hits from WAC were validated by 15N-HSQC NMR assays and specific regions of binding were identified. The recombinant mutant proteins (4th FAS-1 domain of R555W and H572R) were subjected to limited proteolysis by trypsin together with the lead compounds identified by NMR assays. The lead compounds (MO07617, RJF00203 and, BTB05094) were effective to delay/prevent the generation of amyloidogenic peptides in the R555W mutant and compounds (RJF00203 and BTB05094) were effective to delay/prevent the generation of amyloidogenic peptides in the H572R mutant. Thus the lead compounds reported here upon further validation and/or modification might be proposed as a potential treatment option to prevent/delay aggregation by inhibiting the formation of amyloidogenic peptides in TGFBI-corneal dystrophy.

17.
JACC Cardiovasc Imaging ; 13(11): 2287-2299, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32654963

RESUMO

Objectives: The aim of this study was to investigate whether right ventricular longitudinal strain (RVLS) was independently predictive of higher mortality in patients with coronavirus disease-2019 (COVID-19). Background: RVLS obtained from 2-dimensional speckle-tracking echocardiography has been recently demonstrated to be a more accurate and sensitive tool to estimate right ventricular (RV) function. The prognostic value of RVLS in patients with COVID-19 remains unknown. Methods: One hundred twenty consecutive patients with COVID-19 who underwent echocardiographic examinations were enrolled in our study. Conventional RV functional parameters, including RV fractional area change, tricuspid annular plane systolic excursion, and tricuspid tissue Doppler annular velocity, were obtained. RVLS was determined using 2-dimensional speckle-tracking echocardiography. RV function was categorized in tertiles of RVLS. Results: Compared with patients in the highest RVLS tertile, those in the lowest tertile were more likely to have higher heart rate; elevated levels of D-dimer and C-reactive protein; more high-flow oxygen and invasive mechanical ventilation therapy; higher incidence of acute heart injury, acute respiratory distress syndrome, and deep vein thrombosis; and higher mortality. After a median follow-up period of 51 days, 18 patients died. Compared with survivors, nonsurvivors displayed enlarged right heart chambers, diminished RV function, and elevated pulmonary artery systolic pressure. Male sex, acute respiratory distress syndrome, RVLS, RV fractional area change, and tricuspid annular plane systolic excursion were significant univariate predictors of higher risk for mortality (p < 0.05 for all). A Cox model using RVLS (hazard ratio: 1.33; 95% confidence interval [CI]: 1.15 to 1.53; p < 0.001; Akaike information criterion = 129; C-index = 0.89) was found to predict higher mortality more accurately than a model with RV fractional area change (Akaike information criterion = 142, C-index = 0.84) and tricuspid annular plane systolic excursion (Akaike information criterion = 144, C-index = 0.83). The best cutoff value of RVLS for prediction of outcome was -23% (AUC: 0.87; p < 0.001; sensitivity, 94.4%; specificity, 64.7%). Conclusions: RVLS is a powerful predictor of higher mortality in patients with COVID-19. These results support the application of RVLS to identify higher risk patients with COVID-19.


Assuntos
Infecções por Coronavirus/complicações , Ecocardiografia Doppler , Pneumonia Viral/complicações , Disfunção Ventricular Direita/diagnóstico por imagem , Função Ventricular Direita , Adulto , Idoso , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/mortalidade , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Fatores de Risco , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/mortalidade , Disfunção Ventricular Direita/fisiopatologia
18.
JACC CardioOncol ; 2(5): 677-689, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34396282

RESUMO

Echocardiographic imaging is crucial for patient management during cardiotoxic cancer therapy. Left ventricular ejection fraction is the most commonly used parameter for identifying left ventricular dysfunction. However, it lacks sensitivity to detect subclinical changes in cardiac function due to cardiotoxic treatment. Global longitudinal strain (GLS) is the best studied strain parameter with established diagnostic and prognostic value. Multiple studies have demonstrated changes in GLS as an early marker of cardiotoxicity. This document serves as a primer to help clinicians in the acquisition and interpretation of strain in cardio-oncology. Cases with embedded videos illustrate a step-by-step approach to obtaining GLS measurements and common pitfalls to avoid. The document includes a concise summary of the indications of GLS in cardio-oncology and its role in guiding oncological therapy. Practical approaches on how to implement strain in the echo laboratory with guidance on training and quality assurance are also discussed.

19.
JACC Case Rep ; 2(10): 1575-1577, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34317021

RESUMO

Using 3-dimensional speckle-tracking echocardiography-derived activation imaging system, we visualized interventricular dyssynchrony in a repaired tetralogy of Fallot case with pacing-induced left ventricular dysfunction. The activation imaging system visualized interventricular dyssynchrony and resynchronization after cardiac resynchronization therapy and may be useful to assess electromechanical disturbance in complicated congenital heart diseases. (Level of Difficulty: Intermediate.).

20.
World Neurosurg X ; 2: 100021, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31218295

RESUMO

BACKGROUND: Brain tumor surgery requires careful balance between maximizing tumor excision and preserving eloquent cortex. In some cases, the surgeon may opt to perform an awake craniotomy including intraoperative mapping of brain function by direct cortical stimulation (DCS) to assist in surgical decision-making. Preoperatively, functional magnetic resonance imaging (fMRI) facilitates planning by identification of eloquent brain areas, helping to guide DCS and other aspects of the surgical plan. However, brain deformation (shift) limits the usefulness of preoperative fMRI during surgery. To address this, an integrated visualization method for fMRI and DCS results is developed that is intuitive for the surgeon. METHODS: An image registration pipeline was constructed to display preoperative fMRI data corrected for brain shift overlaid on images of the exposed cortical surface at the beginning and completion of DCS mapping. Preoperative fMRI and DCS data were registered for a range of misalignments, and the residual registration errors were calculated. The pipeline was validated on imaging data from five brain tumor patients who underwent awake craniotomy. RESULTS: Registration errors were well under 5 mm (the approximate spatial resolution of DCS) for misalignments of up to 25 mm and approximately 10-15°. For rotational misalignments up to 20°, the success rate was 95% for an error tolerance of 5 mm. Failures were negligible for rotational misalignments up to 10°. Good quality registrations were observed for all five patients. CONCLUSIONS: A proof-of-concept image registration pipeline is presented with acceptable accuracy for intraoperative use, providing multimodality visualization with potential benefits for intraoperative brain mapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA