RESUMO
Increasing mesophyll conductance of CO2 (gm ) is a strategy to improve photosynthesis in C3 crops. However, the relative importance of different anatomical traits in determining gm in crops is unclear. Mesophyll conductance measurements were performed on 10 crops using the online carbon isotope discrimination method and the 'variable J' method in parallel. The influences of crucial leaf anatomical traits on gm were evaluated using a one-dimensional anatomical CO2 diffusion model. The gm values measured using two independent methods were compatible, although significant differences were observed in their absolute values. Quantitative analysis showed that cell wall thickness and chloroplast stroma thickness are the most important elements along the diffusion pathway. Unexpectedly, the large variability of gm across crops was not associated with any investigated leaf anatomical traits except chloroplast thickness. The gm values estimated using the anatomical model differed remarkably from the values measured in vivo in most species. However, when the species-specific effective porosity of the cell wall and the species-specific facilitation effect of CO2 diffusion across the membrane and chloroplast stoma were taken into account, the model could output gm values very similar to those measured in vivo. These results indicate that gm variation across crops is probably also driven by the effective porosity of the cell wall and effects of facilitation of CO2 transport across the membrane and chloroplast stroma in addition to the thicknesses of the elements.
Assuntos
Dióxido de Carbono , Células do Mesofilo , Células do Mesofilo/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Fotossíntese , Cloroplastos/metabolismo , Produtos Agrícolas/metabolismoRESUMO
Mycoprotein is a food ingredient from filamentous fungi rich in protein and fibre. This study investigated the protein bioaccessibility from the fungal cells by colourimetric assays in different mycoprotein formulations, following extraction methods and in vitro gastrointestinal digestion. The methods effects were further analysed by static laser light scattering, SDS-PAGE and optical-fluorescence microscopy. The extraction methods released a comparable proportion of protein (30 wt%) independent of sample concentration (10 wt% and 25 wt%), whereas the simulated digestions endpoints released a higher proportion of protein from the less concentrated (46 wt%). Furthermore, mechanical/physical processing had only a minor impact. Intestinal proteases promoted the most efficient protein release but without causing any apparent damage to the cell walls when viewed by microscopy. This suggested that the enzymes can diffuse through the cell walls, due to its porosity/permeability, and are the main factors responsible for the hydrolysis and bioaccessibility of protein from mycoprotein.
Assuntos
Proteínas Fúngicas/metabolismo , Animais , Disponibilidade Biológica , Parede Celular/química , Parede Celular/metabolismo , Fibras na Dieta/metabolismo , Digestão , Proteínas Fúngicas/química , Fungos/química , Fungos/metabolismoRESUMO
Macronutrients in whole plant foods are enclosed inside cells. The metabolic response from these entrapped nutrients may depend on cell-wall porosity, by controlling the passage of digestive enzymes. As non-interacting size mimics of digestive enzymes, we investigated the diffusion of fluorescently-labelled probes across the walls of isolated plant cells from potato tuber, red kidney bean and banana. Diffusion properties of permeable probes, dextran (20-kDa and 70-kDa) and albumin, were quantified, using fluorescence recovery after photobleaching. The consistent reduction of diffusion rate in the presence of cell walls (around 40%) compared to free-diffusion rate was attributed to the limiting porosity of the wall matrix. A combination of the physical barrier effects demonstrated here and non-catalytic binding of enzymes to cell walls limits the hydrolysis of intracellular macronutrients. This and further understanding of the structural basis for the physical barrier properties would help to design foods from plant materials with enhanced nutrition.
Assuntos
Parede Celular/química , Musa/citologia , Nutrientes/metabolismo , Phaseolus/citologia , Solanum tuberosum/citologia , Parede Celular/metabolismo , Dextranos/química , Dextranos/metabolismo , Difusão , Enzimas/química , Enzimas/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Hidrólise , Musa/química , Nutrientes/química , Phaseolus/química , Células Vegetais/química , Tubérculos/citologia , Porosidade , Solanum tuberosum/químicaRESUMO
Dithianon is a broad-spectrum anthraquinone fungicide used to control several diseases of grapes, apples, and other fruits and vegetables. Its mode of action is described as multi-site and associated to thiol-reactivity. As other fungicides can affect non-phytopathogenic organisms as yeasts and bacteria, with impact on microbial population, diversity, and fermentation processes. In this context, we study the effect of dithianon on the model organism and fermentative yeast Saccharomyces cerevisiae in order to elucidate the mechanisms involved in yeast cell death., and explain its interference on wine fermentation kinetics. Thus for, we analyzed cellular protein and non-protein thiols, membrane and cell wall integrity, reactive oxygen species accumulation, mitochondrial membrane potential, and phosphatidylserine externalization. The results showed that when exponentially aerobic growing cells of S. cerevisiae are submitted to acute dithianon treatment they loss cell wall and membrane integrity, dying by necrosis, and this behavior is associated to a depletion of reduced proteic and non-proteic thiol groups. We also detected an important increase of cellular reactive oxygen species (ROS) associated to mitochondrial membrane potential modifications on dithianon treated cells. ROS accumulation was not associated to apoptotic cell death, but can be responsible for intracellular damages. Moreover, necrotic cell death induced by dithianon explains its effect on the kinetics of wine fermentations.