Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Ther ; 32(7): 2130-2149, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796707

RESUMO

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knockout mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof of principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A-related Lafora disease.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Doença de Lafora , Camundongos Knockout , Proteínas Tirosina Fosfatases não Receptoras , Doença de Lafora/terapia , Doença de Lafora/genética , Doença de Lafora/metabolismo , Animais , Terapia Genética/métodos , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Camundongos , Dependovirus/genética , Humanos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Eletroencefalografia , Proteômica/métodos
2.
Brain Commun ; 6(2): fcae104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585668

RESUMO

Lafora disease is a fatal teenage-onset progressive myoclonus epilepsy and neurodegenerative disease associated with polyglucosan bodies. Polyglucosans are long-branched and as a result precipitation- and aggregation-prone glycogen. In mouse models, downregulation of glycogen synthase, the enzyme that elongates glycogen branches, prevents polyglucosan formation and rescues Lafora disease. Mouse work, however, has not yet revealed the mechanisms of polyglucosan generation, and few in vivo human studies have been performed. Here, non-invasive in vivo magnetic resonance spectroscopy (1H and 31P) was applied to test scan feasibility and assess neurotransmitter balance and energy metabolism in Lafora disease towards a better understanding of pathogenesis. Macromolecule-suppressed gamma-aminobutyric acid (GABA)-edited 1H magnetic resonance spectroscopy and 31P magnetic resonance spectroscopy at 3 and 7 tesla, respectively, were performed in 4 Lafora disease patients and a total of 21 healthy controls (12 for the 1H magnetic resonance spectroscopy and 9 for the 31PMRS). Spectra were processed using in-house software and fit to extract metabolite concentrations. From the 1H spectra, we found 33% lower GABA concentrations (P = 0.013), 34% higher glutamate + glutamine concentrations (P = 0.011) and 24% lower N-acetylaspartate concentrations (P = 0.0043) in Lafora disease patients compared with controls. From the 31P spectra, we found 34% higher phosphoethanolamine concentrations (P = 0.016), 23% lower nicotinamide adenine dinucleotide concentrations (P = 0.003), 50% higher uridine diphosphate glucose concentrations (P = 0.004) and 225% higher glucose 6-phosphate concentrations in Lafora disease patients versus controls (P = 0.004). Uridine diphosphate glucose is the substrate of glycogen synthase, and glucose 6-phosphate is its extremely potent allosteric activator. The observed elevated uridine diphosphate glucose and glucose 6-phosphate levels are expected to hyperactivate glycogen synthase and may underlie the generation of polyglucosans in Lafora disease. The increased glutamate + glutamine and reduced GABA indicate altered neurotransmission and energy metabolism, which may contribute to the disease's intractable epilepsy. These results suggest a possible basis of polyglucosan formation and potential contributions to the epilepsy of Lafora disease. If confirmed in larger human and animal model studies, measurements of the dysregulated metabolites by magnetic resonance spectroscopy could be developed into non-invasive biomarkers for clinical trials.

3.
Brain Sci ; 13(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38137127

RESUMO

Lafora disease is a rare genetic disorder characterized by a disruption in glycogen metabolism. It manifests as progressive myoclonus epilepsy and cognitive decline during adolescence. Pathognomonic is the presence of abnormal glycogen aggregates that, over time, produce large inclusions (Lafora bodies) in various tissues. This study aims to describe the clinical and histopathological aspects of a novel Lafora disease patient, and to provide an update on the therapeutical advancements for this disorder. A 20-year-old Libyan boy presented with generalized tonic-clonic seizures, sporadic muscular jerks, eyelid spasms, and mental impairment. Electroencephalography showed multiple discharges across both brain hemispheres. Brain magnetic resonance imaging was unremarkable. Muscle biopsy showed increased lipid content and a very mild increase of intermyofibrillar glycogen, without the polyglucosan accumulation typically observed in Lafora bodies. Despite undergoing three lines of antiepileptic treatment, the patient's condition showed minimal to no improvement. We identified the homozygous variant c.137G>A, p.(Cys46Tyr), in the EPM2B/NHLRC1 gene, confirming the diagnosis of Lafora disease. To our knowledge, the presence of lipid aggregates without Lafora bodies is atypical. Lafora disease should be considered during the differential diagnosis of progressive, myoclonic, and refractory epilepsies in both children and young adults, especially when accompanied by cognitive decline. Although there are no effective therapies yet, the development of promising new strategies prompts the need for an early and accurate diagnosis.

4.
Genes (Basel) ; 14(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37107612

RESUMO

Lafora disease (LD) is a progressive neurologic disorder caused by biallelic pathogenic variants in EPM2A or EPM2B, leading to tissue accumulation of polyglucosan aggregates termed Lafora bodies (LBs). This study aimed to characterize the retinal phenotype in Epm2a-/- mice by examining knockout (KO; Epm2a-/-) and control (WT) littermates at two time points (10 and 14 months, respectively). In vivo exams included electroretinogram (ERG) testing, optical coherence tomography (OCT) and retinal photography. Ex vivo retinal testing included Periodic acid Schiff Diastase (PASD) staining, followed by imaging to assess and quantify LB deposition. There was no significant difference in any dark-adapted or light-adapted ERG parameters between KO and WT mice. The total retinal thickness was comparable between the groups and the retinal appearance was normal in both groups. On PASD staining, LBs were observed in KO mice within the inner and outer plexiform layers and in the inner nuclear layer. The average number of LBs within the inner plexiform layer in KO mice were 1743 ± 533 and 2615 ± 915 per mm2, at 10 and 14 months, respectively. This is the first study to characterize the retinal phenotype in an Epm2a-/- mouse model, demonstrating significant LB deposition in the bipolar cell nuclear layer and its synapses. This finding may be used to monitor the efficacy of experimental treatments in mouse models.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Camundongos , Animais , Doença de Lafora/genética , Doença de Lafora/patologia , Modelos Animais de Doenças , Retina/patologia , Epilepsias Mioclônicas Progressivas/patologia , Eletrorretinografia
5.
Arch Biochem Biophys ; 741: 109596, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030589

RESUMO

OBJECTIVE: Preeclampsia (PE) is a maternal multisystem disease with an unclear mechanism. Data showed that MiR-95-3p promoted cell migration, invasion and proliferation, leading to the occurrence and development of many cancers, and placental trophoblasts and tumor cells had similar migration, invasion and proliferation abilities. Meanwhile we found that MiR-95-3p was differentially expressed in PE and normal placenta. Therefore, this article aimed to explore the biological function and mechanism of miR-95-3p in PE. METHODS: The expression of miR-95-3p in PE and normal placental tissue was explored by high-throughput sequencing and qRT-PCR. The effects of miR-95-3p on trophoblast migration, invasion, proliferation, angiogenesis and apoptosis were investigated by Transwell migration and invasion assays, cell viability assay, tube formation assay and flow cytometry in two trophoblast cell lines (HTR-8/SVneo and JAR). The miR-95-3p target gene EPM2A was identified and verified by unique identifier mRNA next-generation sequencing and dual-luciferase reporter gene experiments. Rescue experiments were conducted to investigate whether miR-95-3p regulated EPM2A to participate in trophoblast migration and invasion. Finally, the effects of miR-95-3p and EPM2A on the expression of angiogenic factors and inflammation-related factors were investigated by ELISA. RESULTS: We found that miR-95-3p was expressed at low levels in the placental tissue of patients with PE and was negatively correlated with EPM2A expression. In vitro upregulation of miR-95-3p and downregulation of EPM2A promote trophoblast migration, invasion and proliferation. Furthermore, EPM2A was confirmed as a target mRNA of miR-95-3p. Upregulation of EPM2A mitigated miR-95-3p-mediated promotion of trophoblast migration and invasion and vice versa. Finally, both miR-95-3p and EPM2A regulate the expression of trophoblast angiogenesis-related factors and inflammation-related factors. CONCLUSION: Our findings demonstrated that miR-95-3p promoted the migration and invasion of trophoblast cells by targeting EPM2A to inhibit the occurrence and development of PE.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Trofoblastos , Feminino , Humanos , Gravidez , Movimento Celular/genética , Proliferação de Células/genética , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteínas Tirosina Fosfatases não Receptoras , RNA Mensageiro/metabolismo , Trofoblastos/metabolismo
6.
Arkh Patol ; 84(6): 61-66, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36469720

RESUMO

Lafora disease is a rare hereditary genetic pathology of the nervous system (a group of progressive myoclonic epilepsies). The distinctive morphological feature of this disease is the presence of specific abnormal structures - polyglucosane bodies («Lafora bodies¼) in the brain tissue, myocardium, liver, and epithelium of the sweat gland ducts. The article discusses the clinical data of the course of Lafora's disease in an 18-year-old patient with a fatal outcome and the results of a post-mortem examination. The diagnosis of Lafora disease was confirmed by genetic analysis data - the presence of a homozygous mutation in the 2nd exon of the EPM2A gene - laforin (chr6:146007412G>A, rs137852915). When analyzing literature, we did not find a description of Lafora's disease cases with a fatal outcome with the presentation of macroscopic examination data at autopsy, as well as the results of a pathohistological examination of altered organ tissues with the morphological manifestations specific for this pathology (Lafora bodies in the the brain, heart, sweat gland epithelium).


Assuntos
Doença de Lafora , Humanos , Adolescente , Doença de Lafora/diagnóstico , Doença de Lafora/genética , Doença de Lafora/patologia , Evolução Fatal , Proteínas Tirosina Fosfatases não Receptoras/genética , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Mutação
7.
Neurol Sci ; 43(5): 3467-3471, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35257260

RESUMO

We report a case of progressive myoclonic epilepsy caused by a novel mutation in EPM2A. The female patient experienced abnormal jerky movements of the involving all four limbs and several generalized seizures, degeneration of cognition, and unsteadiness. Genetic analysis identified two rare, deleterious mutations in exon4: chr6: 145,948,751(c.G797G > A) and chr6: 145,948,761(c.T787C > T). The mutations at these two loci were from the genomes of their mother and father, respectively, which were compound heterozygous variations. This report updates the mutation sites of gene EPM2A and extends genotype-phenotype correlations in Lafora disease.


Assuntos
Doença de Lafora , Epilepsias Mioclônicas Progressivas , Feminino , Humanos , Doença de Lafora/genética , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina-Proteína Ligases/genética
8.
Neurotherapeutics ; 19(3): 982-993, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347645

RESUMO

Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.


Assuntos
Doença de Lafora , MicroRNAs , Animais , Modelos Animais de Doenças , Glucanos , Glicogênio , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Doença de Lafora/genética , Doença de Lafora/patologia , Doença de Lafora/terapia , Camundongos , Doenças do Sistema Nervoso , Doenças Neuroinflamatórias
9.
Neurol Asia ; 26(2): 427-433, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34733372

RESUMO

Lafora body disease (MIM-254780), a glycogen storage disease, characterized by Lafora bodies (deformed glycogen molecules) accumulating in multiple organs, is a rare form of myoclonic epilepsy. It manifests in early adolescent years, initially with seizures and myoclonus, followed by dementia and progressive cognitive decline, ultimately culminating in death within 10 years. In Pakistan so far 5 cases have been reported. Here, we report a new case of Lafora body disease belonging to a consanguineous family from Pakistan. Histopathological analysis confirmed presence of lafora bodies in the patient`s skin. Sanger sequencing revealed novel homozygous 5bp deletion mutation (NM_005670.4; c.359_363delGTGTG) in exon 2 of the EPM2A gene, which was truly segregated in the family. These results will increase our understanding regarding the aetiology of this disorder and will further add to the mutation spectrum of EPM2A gene.

10.
Life (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34357061

RESUMO

Canine Lafora disease is a recessively inherited, rapidly progressing neurodegenerative disease caused by the accumulation of abnormally constructed insoluble glycogen Lafora bodies in the brain and other tissues due to the loss of NHL repeat containing E3 ubiquitin protein ligase 1 (NHLRC1). Dogs have a dodecamer repeat sequence within the NHLRC1 gene, which is prone to unstable (dynamic) expansion and loss of function. Progressive signs of Lafora disease include hypnic jerks, reflex and spontaneous myoclonus, seizures, vision loss, ataxia and decreased cognitive function. We studied five dogs (one Chihuahua, two French Bulldogs, one Griffon Bruxellois, one mixed breed) with clinical signs associated with canine Lafora disease. Identification of polyglucosan bodies (Lafora bodies) in myocytes supported diagnosis in the French Bulldogs; muscle areas close to the myotendinous junction and the myofascial union segment had the highest yield of inclusions. Postmortem examination of one of the French Bulldogs revealed brain Lafora bodies. Genetic testing for the known canine NHLRC1 mutation confirmed the presence of a homozygous mutation associated with canine Lafora disease. Our results show that Lafora disease extends beyond previous known breeds to the French Bulldog, Griffon Bruxellois and even mixed-breed dogs, emphasizing the likely species-wide nature of this genetic problem. It also establishes these breeds as animal models for the devastating human disease. Genetic testing should be used when designing breeding strategies to determine the frequency of the NHLRC1 mutation in affected breeds. Lafora diseases should be suspected in any older dog presenting with myoclonus, hypnic jerks or photoconvulsions.

11.
Neurotherapeutics ; 18(2): 1414-1425, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33830476

RESUMO

Many adult and most childhood neurological diseases have a genetic basis. CRISPR/Cas9 biotechnology holds great promise in neurological therapy, pending the clearance of major delivery, efficiency, and specificity hurdles. We applied CRISPR/Cas9 genome editing in its simplest modality, namely inducing gene sequence disruption, to one adult and one pediatric disease. Adult polyglucosan body disease is a neurodegenerative disease resembling amyotrophic lateral sclerosis. Lafora disease is a severe late childhood onset progressive myoclonus epilepsy. The pathogenic insult in both is formation in the brain of glycogen with overlong branches, which precipitates and accumulates into polyglucosan bodies that drive neuroinflammation and neurodegeneration. We packaged Staphylococcus aureus Cas9 and a guide RNA targeting the glycogen synthase gene, Gys1, responsible for brain glycogen branch elongation in AAV9 virus, which we delivered by neonatal intracerebroventricular injection to one mouse model of adult polyglucosan body disease and two mouse models of Lafora disease. This resulted, in all three models, in editing of approximately 17% of Gys1 alleles and a similar extent of reduction of Gys1 mRNA across the brain. The latter led to approximately 50% reductions of GYS1 protein, abnormal glycogen accumulation, and polyglucosan bodies, as well as ameliorations of neuroinflammatory markers in all three models. Our work represents proof of principle for virally delivered CRISPR/Cas9 neurotherapeutics in an adult-onset (adult polyglucosan body) and a childhood-onset (Lafora) neurological diseases.


Assuntos
Encéfalo/metabolismo , Glucanos/metabolismo , Doença de Depósito de Glicogênio/genética , Glicogênio Sintase/genética , Glicogênio/metabolismo , Doença de Lafora/genética , Doenças do Sistema Nervoso/genética , Doenças Neuroinflamatórias/genética , RNA Mensageiro/metabolismo , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Edição de Genes , Doença de Depósito de Glicogênio/metabolismo , Doença de Depósito de Glicogênio/terapia , Doença de Lafora/metabolismo , Doença de Lafora/terapia , Camundongos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/terapia , Estudo de Prova de Conceito
12.
J Neurol Sci ; 424: 117409, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33773408

RESUMO

BACKGROUND: Lafora disease (LD) is characterized by progressive myoclonus, refractory epilepsy, and cognitive deterioration. This complex neurodegenerative condition is caused by pathogenic variants in EPM2A/EPM2B genes, encoding two essential glycogen metabolism enzymes known as laforin and malin. Long-term follow-up data are lacking. We describe the clinical features and genetic findings of a cohort of 26 Italian patients with a long clinical follow-up. METHODS: Patients with EPM2A/EPM2B pathogenic variants were identified by direct gene sequencing or gene panels with targeted re-sequencing. Disease progression, motor functions, and mental performance were assessed by a simplified disability scale. Spontaneous/action myoclonus severity was scored by the Magaudda Scale. RESULTS: Age range was 12.2-46.2 years (mean:25.53 ± 9.14). Age at disease onset ranged from 10 to 22 years (mean:14.04 ± 2.62). The mean follow-up period was 11.48 ± 7.8 years. Twelve out of the 26 (46%) patients preserved walking ability and 13 (50%) maintained speech. A slower disease progression with preserved ambulation and speech after ≥4 years of follow-up was observed in 1 (11%) out of the 9 (35%) EPM2A patients and in 6 (35%) out of the 17 (65%) EPM2B patients. Follow-up was >10 years in 7 (41.2%) EPM2B individuals, including two harbouring the homozygous p.(D146N) pathogenic variant. CONCLUSIONS: This study supports an overall worse disease outcome with severe deterioration of ambulation and speech in patients carrying EPM2A mutations. However, the delayed onset of disabling symptoms observed in the EPM2B subjects harbouring the p.(D146N) pathogenic variant suggests that the underlying causative variant may still influence LD severity.


Assuntos
Doença de Lafora , Adolescente , Adulto , Criança , Estudos de Associação Genética , Humanos , Itália , Doença de Lafora/genética , Pessoa de Meia-Idade , Mutação/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina-Proteína Ligases/genética , Adulto Jovem
13.
Neurol Sci ; 41(8): 2267-2270, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32342326

RESUMO

EPM2A has been certified as a causative gene in patients with Lafora disease (LD), which is a rare autosomal recessive and severe form of progressive myoclonus epilepsy. LD classically starts in adolescence, characterized by various types of seizure with myoclonic seizure as the main type. Typically within 10 years, intractable seizure attack, rapidly progressing dementia, and a vegetative state were present. LD is particularly frequently found in Mediterranean countries. Here, we report a Chinese family with a novel compound heterozygous mutation in the EPM2A gene, characterized by recurrent vomiting, intractable epilepsy, and progressive cognitive decline.


Assuntos
Doença de Lafora , Adolescente , China , Humanos , Doença de Lafora/genética , Masculino , Mutação/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Convulsões , Ubiquitina-Proteína Ligases
14.
Eur J Nucl Med Mol Imaging ; 47(6): 1576-1584, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31858178

RESUMO

PURPOSE: To describe cerebral glucose metabolism pattern as assessed by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in Lafora disease (LD), a rare, lethal form of progressive myoclonus epilepsy caused by biallelic mutations in EPM2A or NHLRC1. METHODS: We retrospectively included patients with genetically confirmed LD who underwent FDG-PET scan referred to three Italian epilepsy centers. FDG-PET images were evaluated both visually and using SPM12 software. Subgroup analysis was performed on the basis of genetic and clinical features employing SPM. Moreover, we performed a systematic literature review of LD cases that underwent FDG-PET assessment. RESULTS: Eight Italian patients (3M/5F, 3 EPM2A/5 NHLRC1) underwent FDG-PET examination after a mean of 6 years from disease onset (range 1-12 years). All patients showed bilateral hypometabolic areas, more diffuse and pronounced in advanced disease stages. Most frequently, the hypometabolic regions were the temporal (8/8), parietal (7/8), and frontal lobes (7/8), as well as the thalamus (6/8). In three cases, the FDG-PET repeated after a mean of 17 months (range 7-36 months) showed a metabolic worsening compared with the baseline examination. The SPM subgroup analysis found no significant differences based on genetics, whereas it showed a more significant temporoparietal hypometabolism in patients with visual symptoms compared with those without. In nine additional cases identified from eight publications, FDG-PET showed heterogeneous findings, ranging from diffusely decreased cerebral glucose metabolism to unremarkable examinations in two cases. CONCLUSIONS: FDG-PET seems highly sensitive to evaluate LD at any stage and may correlate with disease progression. Areas of decreased glucose metabolism in LD are extensive, often involving multiple cortical and subcortical regions, with thalamus, temporal, frontal, and parietal lobes being the most severely affected. Prospective longitudinal collaborative studies are needed to validate our findings.


Assuntos
Fluordesoxiglucose F18 , Doença de Lafora , Encéfalo/diagnóstico por imagem , Humanos , Doença de Lafora/diagnóstico por imagem , Doença de Lafora/genética , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Estudos Retrospectivos , Ubiquitina-Proteína Ligases
15.
Orphanet J Rare Dis ; 14(1): 149, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227012

RESUMO

BACKGROUND: Lafora disease (LD) is a rare, lethal, progressive myoclonus epilepsy for which no targeted therapy is currently available. Studies on a mouse model of LD showed a good response to metformin, a drug with a well known neuroprotective effect. For this reason, in 2016, the European Medicines Agency granted orphan designation to metformin for the treatment of LD. However, no clinical data is available thus far. METHODS: We retrospectively collected data on LD patients treated with metformin referred to three Italian epilepsy centres. RESULTS: Twelve patients with genetically confirmed LD (6 EPM2A, 6 NHLRC1) at middle/late stages of disease were treated with add-on metformin for a mean period of 18 months (range: 6-36). Metformin was titrated to a mean maintenance dose of 1167 mg/day (range: 500-2000 mg). In four patients dosing was limited by gastrointestinal side-effects. No serious adverse events occurred. Three patients had a clinical response, which was temporary in two, characterized by a reduction of seizure frequency and global clinical improvement. CONCLUSIONS: Metformin was overall safe in our small cohort of LD patients. Even though the clinical outcome was poor, this may be related to the advanced stage of disease in our cases and we cannot exclude a role of metformin in slowing down LD progression. Therefore, on the grounds of the preclinical data, we believe that treatment with metformin may be attempted as early as possible in the course of LD.


Assuntos
Doença de Lafora/tratamento farmacológico , Metformina/uso terapêutico , Adolescente , Animais , Modelos Animais de Doenças , Feminino , Humanos , Doença de Lafora/genética , Masculino , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Estudos Retrospectivos , Ubiquitina-Proteína Ligases/genética
16.
Front Pediatr ; 6: 424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30701169

RESUMO

Lafora disease (LD) is a rare autosomal recessive disorder characterized by progressive myoclonic epilepsy followed by continuous neurological decline, culminating in death within 10 years. LD leads to accumulation of insoluble, abnormal, glycogen-like structures called Lafora bodies (LBs). It is caused by mutations in the gene encoding glycogen phosphatase (EPM2A) or the E3 ubiquitin ligase malin (EPM2B/NHLRC1). These two proteins are involved in an intricate, however, incompletely elucidated pathway governing glycogen metabolism. The formation of EPM2A and malin signaling complex promotes the ubiquitination of proteins participating in glycogen metabolism, where dysfunctional mutations lead to the formation of LBs. Herein, we describe a 13-years-old child with LD due to a NHLRC1 (c.386C > A, p.Pro129His) mutation, who has developed diabetes mellitus and was treated with metformin. We discuss how basic mechanisms of LD could be linked to ß-cell dysfunction and insulin resistance.

19.
J Neurol Sci ; 373: 263-267, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28131202

RESUMO

Lafora disease (LD) is progressive myoclonic epilepsy with late childhood- to teenage-onset. Mutations in two genes, EPM2A and NHLRC1, are responsible for this autosomal recessive disease in many patients Worldwide. In present study, we reported two unrelated consanguineous Pakistani families with Lafora disease (Families A and B). Affected individuals in both families presented with generalized tonic clonic seizures, intellectual disability, ataxia and cognitive decline. Diagnosis of Lafora disease was made on histo-pathological analysis of the skin biopsy, found positive for lafora bodies in periodic acid schiff stain and frequent generalized epileptiform discharges on electroencephalogram (EEG). Bi-directional sequencing in family A was performed for EPM2A and NHLRC1 genes but no mutation was found. In family B, Illumina TruSight One Sequencing Panel covering 4813 OMIM genes was carried out and we identified a novel homozygous mutation c.95G>T; p.32Trp>Leu of EPM2A gene which was found co-segregated in this family through Sanger sequencing. Structural analysis of this mutation, through different in silico approaches, predicted loss of stability and conformation in Laforin protein.


Assuntos
Doença de Lafora/diagnóstico , Doença de Lafora/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Proteínas de Transporte/genética , Diagnóstico Diferencial , Feminino , Humanos , Doença de Lafora/patologia , Doença de Lafora/fisiopatologia , Mutação , Paquistão , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Pele/patologia , Ubiquitina-Proteína Ligases
20.
Epileptic Disord ; 18(S2): 38-62, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702709

RESUMO

Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy due to mutations in the EPM2A (laforin) and EPM2B (malin) genes, with no substantial genotype-phenotype differences between the two. Founder effects and recurrent mutations are common, and mostly isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen. Polyglucosans, or Lafora bodies (LB) are typically found in the brain, periportal hepatocytes of the liver, skeletal and cardiac myocytes, and in the eccrine duct and apocrine myoepithelial cells of sweat glands. Mouse models of the disease and other naturally occurring animal models have similar pathology and phenotype. Hypotheses of LB formation remain controversial, with compelling evidence and caveats for each hypothesis. However, it is clear that the laforin and malin functions regulating glycogen structure are key. With the exception of a few missense mutations LD is clinically homogeneous, with onset in adolescence. Symptoms begin with seizures, and neurological decline follows soon after. The disease course is progressive and fatal, with death occurring within 10 years of onset. Antiepileptic drugs are mostly non-effective, with none having a major influence on the progression of cognitive and behavioral symptoms. Diagnosis and genetic counseling are important aspects of LD, and social support is essential in disease management. Future therapeutics for LD will revolve around the pathogenesics of the disease. Currently, efforts at identifying compounds or approaches to reduce brain glycogen synthesis appear to be highly promising.


Assuntos
Doença de Lafora , Animais , Modelos Animais de Doenças , Aconselhamento Genético , Glicogênio/metabolismo , Humanos , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doença de Lafora/fisiopatologia , Camundongos , Proteínas Tirosina Fosfatases não Receptoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA