Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 85: 101964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823776

RESUMO

OBJECTIVE: Cancer cells must maintain lipid supplies for their proliferation and do so by upregulating lipogenic gene programs. The sterol regulatory element-binding proteins (SREBPs) act as modulators of lipid homeostasis by acting as transcriptional activators of genes required for fatty acid and cholesterol synthesis and uptake. SREBPs have been recognized as chemotherapeutic targets in multiple cancers, however it is not well understood which SREBP target genes are essential for tumorigenesis. In this study, we examined the requirement of SREBP target genes for pancreatic ductal adenocarcinoma (PDAC) tumor growth. METHODS: Here we constructed a custom CRISPR knockout library containing known SREBP target genes and performed in vitro 2D culture and in vivo orthotopic xenograft CRISPR screens using a patient-derived PDAC cell line. In vitro, we grew cells in medium supplemented with 10% fetal bovine serum (FBS) or 10% lipoprotein-deficient serum (LPDS) to examine differences in gene essentiality in different lipid environments. In vivo, we injected cells into the pancreata of nude mice and collected tumors after 4 weeks. RESULTS: We identified terpenoid backbone biosynthesis genes as essential for PDAC tumor development. Specifically, we identified the non-sterol isoprenoid product of the mevalonate pathway, geranylgeranyl diphosphate (GGPP), as an essential lipid for tumor growth. Mechanistically, we observed that restricting mevalonate pathway activity using statins and SREBP inhibitors synergistically induced apoptosis and caused disruptions in small G protein prenylation that have pleiotropic effects on cellular signaling pathways. Finally, we demonstrated that geranylgeranyl diphosphate synthase 1 (GGPS1) knockdown significantly reduces tumor burden in an orthotopic xenograft mouse model. CONCLUSIONS: These findings indicate that PDAC tumors selectively require GGPP over other lipids such as cholesterol and fatty acids and that this is a targetable vulnerability of pancreatic cancer cells.


Assuntos
Proliferação de Células , Camundongos Nus , Neoplasias Pancreáticas , Fosfatos de Poli-Isoprenil , Humanos , Animais , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/farmacologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
2.
J Agric Food Chem ; 72(15): 8704-8714, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572931

RESUMO

Miltiradiene serves as a crucial precursor in the synthesis of various high-value abietane-type diterpenes, exhibiting diverse pharmacological activities. Previous efforts to enhance miltiradiene production have primarily focused on the mevalonate acetate (MVA) pathway. However, limited emphasis has been placed on optimizing the supply of acetyl-CoA and NADPH. In this study, we constructed a platform yeast strain for miltiradiene production by reinforcing the biosynthetic pathway of geranylgeranyl diphosphate (GGPP) and acetyl-CoA, and addressing the imbalance between the supply and demand of the redox cofactor NADPH within the cytoplasm, resulting in an increase in miltiradiene yield to 1.31 g/L. Furthermore, we conducted modifications to the miltiradiene synthase fusion protein tSmKSL1-CfTPS1. Finally, the comprehensive engineering strategies and protein modification strategies culminated in 1.43 g/L miltiradiene in the engineered yeast under shake flask culture conditions. Overall, our work established efficient yeast cell factories for miltiradiene production, providing a foothold for heterologous biosynthesis of abietane-type diterpenes.


Assuntos
Diterpenos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Abietanos , Acetilcoenzima A/metabolismo , NADP/metabolismo , Diterpenos/metabolismo , Engenharia Metabólica/métodos
3.
Enzyme Microb Technol ; 174: 110374, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147781

RESUMO

The enzymes of the mevalonate pathway need to be improved to achieve high yields of isoprenoids in the yeast Saccharomyces cerevisiae. The red yeast Rhodosporidium toruloides produces high levels of carotenoids and may have evolved to carry a naturally high flux of isoprenoids. Enzymes from such yeasts are likely to be promising candidates for improvement. Towards this end, we have systematically investigated the various enzymes of the mevalonate pathway of R. toruloides and custom synthesized, expressed, and evaluated six key enzymes in S. cerevisiae. The two nodal enzymes geranyl pyrophosphate synthase (RtGGPPS) and truncated HMG-CoA reductase (RttHMG) of R. toruloides showed a significant advantage to the cells for isoprenoid production as seen by a visual carotenoid screen. These two were analyzed further, and attempts were also made at further improvement. RtGGPPS was confirmed to be superior to the S. cerevisiae enzyme, as seen from in vitro activity determinations and in vivo production of the heterologous diterpenoid sclareol. Four mutants were created through rational mutagenesis but were unable to improve the activity further. In the case of RttHMG, functional evaluation of the enzyme revealed that it was very unstable despite functioning very well in S. cerevisiae. We succeeded in stabilizing the enzyme through mutation of a conserved serine in the catalytic region, which did not alter the enzyme activity per se. In vivo evaluation of the mutant revealed that it could enable better sclareol yields. Therefore, these two enzymes from the red yeast are excellent candidates for heterologous isoprenoid production.


Assuntos
Acil Coenzima A , Produtos Biológicos , Diterpenos , Terpenos , Terpenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Mevalônico/metabolismo , Carotenoides/metabolismo , Produtos Biológicos/metabolismo
4.
New Phytol ; 239(6): 2292-2306, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381102

RESUMO

Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.


Assuntos
Diterpenos , Solanum lycopersicum , Solanum lycopersicum/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Farnesiltranstransferase , Carotenoides/metabolismo , Isoformas de Proteínas , Folhas de Planta/metabolismo
5.
Plant Methods ; 19(1): 55, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287006

RESUMO

BACKGROUND: Isoprenoids are a very large class of metabolites playing a key role in plant physiological processes such as growth, stress resistance, fruit flavor, and color. In chloroplasts and chromoplasts, the diterpene compound geranylgeranyl diphosphate (GGPP) is the metabolic precursor required for the biosynthesis of tocopherols, plastoquinones, phylloquinone, chlorophylls, and carotenoids. Despite its key role for the plant metabolism, reports on GGPP physiological concentrations in planta have been extremely scarce. RESULTS: In this study, we developed a method to quantify GGPP and its hydrolysis product geranylgeranyl monophosphate (GGP) from tomato fruit, using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Quantification was done by external calibration and the method was validated in terms of specificity, precision, accuracy, and detection and quantitation limits. We further demonstrate the validity of our approach by analysing GGPP contents in the ripe fruits of wild-type tomatoes and mutants defective in GGPP production. Finally, we also show that the sample preparation is key to prevent GGPP hydrolysis and mitigate its conversion to GGP. CONCLUSION: Our study provides an efficient tool to investigate the metabolic fluxes required for GGPP supply and consumption in tomato fruit.

6.
BMC Pharmacol Toxicol ; 23(1): 61, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945639

RESUMO

BACKGROUND: Adipose-derived mesenchymal stem cells (ADMSCs) are a promising source of material source for medical regeneration of cartilage. Growth factors, including transforming growth factor-ß (TGFß) subfamily members and bone morphogenetic proteins (BMPs), play important roles in inducing and promoting chondrogenic differentiation of MSCs. However, these exogenous growth factors have some drawbacks related to their cost, biological half-life, and safety for clinical application. Several studies have reported that statins, the competitive inhibitors of 3-hydroxy-2-methylglutaryl coenzyme A (HMG-CoA) reductase, induce the expression of BMP2 in multiple cell types as the pleotropic effects. The objective of this study was to investigate the effects of fluvastatin during chondrogenic differentiation of human ADMSCs (hADMSCs). METHODS: The effects of fluvastatin were analyzed during chondrogenic differentiation of hADMSCs in the pellet culture without exogenous growth factors by qRT-PCR and histology. For functional studies, Noggin, an antagonist of BMPs, mevalonic acid (MVA) and geranylgeranyl pyrophosphate (GGPP), metabolites of the mevalonate pathway, ROCK inhibitor (Y27632), or RAC1 inhibitor (NSC23766) were applied to cells during chondrogenic differentiation. Furthermore, RhoA activity was measured by RhoA pulldown assay during chondrogenic differentiation with or without fluvastatin. Statistically significant differences between groups were determined by Student's t-test or the Tukey-Kramer test. RESULTS: Fluvastatin-treated cells expressed higher levels of BMP2, SOX9, ACAN, and COL2A1 than control cells, and accumulated higher levels of glycosaminoglycans (GAGs). Noggin significantly inhibited the fluvastatin-mediated upregulation of ACAN and COL2A1. Both MVA and GGPP suppressed the effects of fluvastatin on the expressions of BMP2, SOX9, ACAN, and COL2A1. Furthermore, fluvastatin suppressed the RhoA activity, and inhibition of RhoA-ROCK signaling by Y27632 increased the expressions of BMP2, SOX9, ACAN, and COL2A1, as well as fluvastatin. CONCLUSIONS: Our results suggest that fluvastatin promotes chondrogenic differentiation of hADMSCs by inducing endogenous BMP2, and that one of the mechanisms underlying the effects is inhibition of RhoA-ROCK signaling via suppression of GGPP. Fluvastatin is a safe and low-cost compound that holds promise for use in transplantation of hADMSCs for cartilage regeneration.


Assuntos
Proteína Morfogenética Óssea 2 , Células-Tronco Mesenquimais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular , Células Cultivadas , Condrogênese , Fluvastatina/metabolismo , Fluvastatina/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo
7.
J Cachexia Sarcopenia Muscle ; 13(6): 2697-2711, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961942

RESUMO

BACKGROUND: Statins are widely prescribed cholesterol-lowering drugs but have been shown to increase the risk of type 2 diabetes mellitus. However, the molecular mechanisms underlying the diabetogenic effect of statins are still not fully understood. METHODS: The effects of geranylgeranyl transferase I and II (GGTase I and II) inhibition on insulin-stimulated glucose uptake and GLUT4 translocation, and the dependence of these effects on insulin signalling were investigated in skeletal muscle cells. The protective effects of geranylgeranyl pyrophosphate (GGPP) and its precursor geranylgeraniol (GGOH) on simvastatin-induced insulin resistance were evaluated in vitro and in vivo. The effect of GGTase II inhibition in skeletal muscle on insulin sensitivity in vivo was confirmed by adeno-associated virus serotype 9 (AAV9)-mediated knockdown of the specific subunit of GGTase II, RABGGTA. The regulatory mechanisms of GGTase I on insulin signalling and GGTase II on insulin-stimulated GLUT4 translocation were investigated by knockdown of RhoA, TAZ, IRS1, geranylgeranylation site mutation of RhoA, RAB8A, and RAB13. RESULTS: Both inhibition of GGTase I and II mimicked simvastatin-induced insulin resistance in skeletal muscle cells. GGPP and GGOH were able to prevent simvastatin-induced skeletal muscle insulin resistance in vitro and in vivo. GGTase I inhibition suppressed the phosphorylation of AKT (Ser473) (-51.3%, P < 0.01), while GGTase II inhibition had no effect on it. AAV9-mediated knockdown of RABGGTA in skeletal muscle impaired glucose disposal without disrupting insulin signalling in vivo (-46.2% for gastrocnemius glucose uptake, P < 0.001; -52.5% for tibialis anterior glucose uptake, P < 0.001; -17.8% for soleus glucose uptake, P < 0.05; -31.4% for extensor digitorum longus glucose uptake, P < 0.01). Inhibition of RhoA, TAZ, IRS1, or geranylgeranylation deficiency of RhoA attenuated the beneficial effect of GGPP on insulin signalling in skeletal muscle cells. Geranylgeranylation deficiency of RAB8A inhibited insulin-stimulated GLUT4 translocation and concomitant glucose uptake in skeletal muscle cells (-42.8% for GLUT4 translocation, P < 0.01; -50.6% for glucose uptake, P < 0.001). CONCLUSIONS: Geranylgeranyl pyrophosphate regulates glucose uptake via GGTase I-mediated insulin signalling-dependent way and GGTase II-mediated insulin signalling-independent way in skeletal muscle. Supplementation of GGPP/GGOH could be a potential therapeutic strategy for statin-induced insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Hidroximetilglutaril-CoA Redutases , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glucose , Sinvastatina , Proteínas rab de Ligação ao GTP/farmacologia
8.
New Phytol ; 235(4): 1543-1557, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35524450

RESUMO

A gene upregulated in Nicotiana benthamiana after Bamboo mosaic virus (BaMV) infection was revealed as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (NbDXR). DXR is the key enzyme in the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway that catalyzes the conversion of 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol-4-phosphate. Knockdown and overexpression of NbDXR followed by BaMV inoculation revealed that NbDXR is involved in BaMV accumulation. Treating leaves with fosmidomycin, an inhibitor of DXR function, reduced BaMV accumulation. Subcellular localization confirmed that DXR is a chloroplast-localized protein by confocal microscopy. Furthermore, knockdown of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase, one of the enzymes in the MEP pathway, also reduced BaMV accumulation. The accumulation of BaMV increased significantly in protoplasts treated with isopentenyl pyrophosphate. Thus, the metabolites of the MEP pathway could be involved in BaMV infection. To identify the critical components involved in BaMV accumulation, we knocked down the crucial enzyme of isoprenoid synthesis, NbGGPPS11 or NbGGPPS2. Only NbGGPPS2 was involved in BaMV infection. The geranylgeranyl pyrophosphate (GGPP) synthesized by NbGGPPS2 is known for gibberellin synthesis. We confirmed this result by supplying gibberellic acid exogenously on leaves, which increased BaMV accumulation. The de novo synthesis of gibberellic acid could assist BaMV accumulation.


Assuntos
Giberelinas , Nicotiana/virologia , Potexvirus , Eritritol/análogos & derivados , Eritritol/biossíntese , Giberelinas/metabolismo , Potexvirus/fisiologia , Fosfatos Açúcares/biossíntese , Nicotiana/metabolismo
9.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884489

RESUMO

NRF3 (NFE2L3) belongs to the CNC-basic leucine zipper transcription factor family. An NRF3 homolog, NRF1 (NFE2L1), induces the expression of proteasome-related genes in response to proteasome inhibition. Another homolog, NRF2 (NFE2L2), induces the expression of genes related to antioxidant responses and encodes metabolic enzymes in response to oxidative stress. Dysfunction of each homolog causes several diseases, such as neurodegenerative diseases and cancer development. However, NRF3 target genes and their biological roles remain unknown. This review summarizes our recent reports that showed NRF3-regulated transcriptional axes for protein and lipid homeostasis. NRF3 induces the gene expression of POMP for 20S proteasome assembly and CPEB3 for NRF1 translational repression, inhibiting tumor suppression responses, including cell-cycle arrest and apoptosis, with resistance to a proteasome inhibitor anticancer agent bortezomib. NRF3 also promotes mevalonate biosynthesis by inducing SREBP2 and HMGCR gene expression, and reduces the intracellular levels of neural fatty acids by inducing GGPS1 gene expression. In parallel, NRF3 induces macropinocytosis for cholesterol uptake by inducing RAB5 gene expression. Finally, this review mentions not only the pathophysiological aspects of these NRF3-regulated axes for cancer cell growth and anti-obesity potential but also their possible role in obesity-induced cancer development.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica , Homeostase , Lipídeos/análise , Neoplasias/patologia , Obesidade/complicações , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo
10.
Front Plant Sci ; 12: 757186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745188

RESUMO

Diterpene biosynthesis commonly originates with the methylerythritol phosphate (MEP) pathway in chloroplasts, leading to the C20 substrate, geranylgeranyl pyrophosphate (GGPP). The previous work demonstrated that over-expression of genes responsible for the first and last steps in the MEP pathway in combination with GERANYLGERANYL PYROPHOSPHATE SYNTHASE (GGPPS) and CASBENE SYNTHASE (CAS) is optimal for increasing flux through to casbene in Nicotiana benthamiana. When the gene responsible for the last step in the MEP pathway, 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR), is removed from this combination, casbene is still produced but at lower amounts. Here, we report the unexpected finding that this reduced gene combination also results in the production of 16-hydroxy-casbene (16-OH-casbene), consistent with the presence of 16-hydroxy-geranylgeranyl phosphate (16-OH-GGPP) in the same material. Indirect evidence suggests the latter is formed as a result of elevated levels of 4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) caused by a bottleneck at the HDR step responsible for conversion of HMBPP to dimethylallyl pyrophosphate (DMAPP). Over-expression of a GERANYLLINALOOL SYNTHASE from Nicotiana attenuata (NaGLS) produces 16-hydroxy-geranyllinalool (16-OH-geranyllinalool) when transiently expressed with the same reduced combination of MEP pathway genes in N. benthamiana. This work highlights the importance of pathway flux control in metabolic pathway engineering and the possibility of increasing terpene diversity through synthetic biology.

11.
J Genet Genomics ; 48(4): 300-311, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34049800

RESUMO

Vascular development is essential for the establishment of the circulatory system during embryonic development and requires the proliferation of endothelial cells. However, the underpinning regulatory mechanisms are not well understood. Here, we report that geranylgeranyl pyrophosphate (GGPP), a metabolite involved in protein geranylgeranylation, plays an indispensable role in embryonic vascular development. GGPP is synthesized by geranylgeranyl pyrophosphate synthase (GGPPS) in the mevalonate pathway. The selective knockout of Ggpps in endothelial cells led to aberrant vascular development and embryonic lethality, resulting from the decreased proliferation and enhanced apoptosis of endothelial cells during vasculogenesis. The defect in protein geranylgeranylation induced by GGPP depletion inhibited the membrane localization of RhoA and enhanced yes-associated protein (YAP) phosphorylation, thereby prohibiting the entry of YAP into the nucleus and the expression of YAP target genes related to cell proliferation and the antiapoptosis process. Moreover, inhibition of the mevalonate pathway by simvastatin induced endothelial cell proliferation defects and apoptosis, which were ameliorated by GGPP. Geranylgeraniol (GGOH), a precursor of GGPP, ameliorated the harmful effects of simvastatin on vascular development of developing fetuses in pregnant mice. These results indicate that GGPP-mediated protein geranylgeranylation is essential for endothelial cell proliferation and the antiapoptosis process during embryonic vascular development.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Farnesiltranstransferase/genética , Complexos Multienzimáticos/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Embrião de Mamíferos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Camundongos , Morfogênese/genética , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos de Poli-Isoprenil/farmacologia , Gravidez , Prenilação de Proteína/efeitos dos fármacos , Prenilação de Proteína/genética , Proteínas de Sinalização YAP/genética , Proteína rhoA de Ligação ao GTP/genética
12.
Eur J Immunol ; 51(6): 1461-1472, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33548071

RESUMO

Blocking the mevalonate pathway for cholesterol reduction by using statin may have adverse effects including statin-induced colitis. Moreover, one of the predisposing factors for colitis is an imbalanced CD4+ T cell, which can be observed on the complete deletion of HMG-CoA reductase (HMGCR), a target of statins. In this study, we inquired geranylgeranyl pyrophosphate (GGPP) is responsible for maintaining the T-cell homeostasis. Following dextran sulfate sodium (DSS)-induced colitis, simvastatin increased the severity of disease, while cotreatment with GGPP, but not with cholesterol, reversed the disease magnitude. GGPP ameliorated DSS-induced colitis by increasing Treg cells. GGPP amplified Treg differentiation through increased IL-2/STAT 5 signaling. GGPP prenylated Ras protein, a prerequisite for extracellular signal-regulated kinase (ERK) pathway activation, leading to increased IL-2 production. Higher simvastatin dose increased the severity of colitis. GGPP ameliorated simvastatin-increased colitis by increasing Treg cells. Treg cells, which have the capacity to suppress inflammatory T cells and were generated through IL-2/STAT5 signaling, increased IL-2 production through prenylation and activation of the Ras/ERK pathway.


Assuntos
Anticolesterolemiantes/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Colite/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-2/metabolismo , Fosfatos de Poli-Isoprenil/uso terapêutico , Sinvastatina/administração & dosagem , Linfócitos T Reguladores/imunologia , Animais , Anticolesterolemiantes/efeitos adversos , Diferenciação Celular , Células Cultivadas , Colite/etiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Homeostase , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Ativação Linfocitária , Ácido Mevalônico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sinvastatina/efeitos adversos
13.
aBIOTECH ; 2(3): 289-298, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36303884

RESUMO

Plant isoprenoids (also known as terpenes or terpenoids) are a wide family of primary and secondary metabolites with multiple functions. In particular, most photosynthesis-related isoprenoids (including carotenoids and chlorophylls) as well as diterpenes and polyterpenes derive from geranylgeranyl diphosphate (GGPP) produced by GGPP synthase (GGPPS) enzymes in several cell compartments. Plant genomes typically harbor multiple copies of differentially expressed genes encoding GGPPS-like proteins. While sequence comparisons allow to identify potential GGPPS candidates, experimental evidence is required to ascertain their enzymatic activity and biological function. Actually, functional analyses of the full set of potential GGPPS paralogs are only available for a handful of plant species. Here we review our current knowledge on the GGPPS families of the model plant Arabidopsis thaliana and the crop species rice (Oryza sativa), pepper (Capsicum annuum) and tomato (Solanum lycopersicum). The results indicate that a major determinant of the biological role of particular GGPPS paralogs is the expression profile of the corresponding genes even though specific interactions with other proteins (including GGPP-consuming enzymes) might also contribute to subfunctionalization. In some species, however, a single GGPPS isoforms appears to be responsible for the production of most if not all GGPP required for cell functions. Deciphering the mechanisms regulating GGPPS activity in particular cell compartments, tissues, organs and plant species will be very useful for future metabolic engineering approaches aimed to manipulate the accumulation of particular GGPP-derived products of interest without negatively impacting the levels of other isoprenoids required to sustain essential cell functions.

14.
Cell Biol Toxicol ; 37(3): 441-460, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33034787

RESUMO

Myopathy is the major adverse effect of statins. However, the underlying mechanism of statin-induced skeletal muscle atrophy, one of statin-induced myopathy, remains to be elucidated. Myostatin is a negative regulator of skeletal muscle mass and functions. Whether myostatin is involved in statin-induced skeletal muscle atrophy remains unknown. In this study, we uncovered that simvastatin administration increased serum myostatin levels in mice. Inhibition of myostatin with follistatin, an antagonist of myostatin, improved simvastatin-induced skeletal muscle atrophy. Simvastatin induced myostatin expression not only in skeletal muscle but also in brown adipose tissue (BAT). Mechanistically, simvastatin inhibited the phosphorylation of forkhead box protein O1 (FOXO1) in C2C12 myotubes, promoting the nuclear translocation of FOXO1 and thereby stimulating the transcription of myostatin. In differentiated brown adipocytes, simvastatin promoted myostatin expression mainly by inhibiting the expression of interferon regulatory factor 4 (IRF4). Moreover, the stimulative effect of simvastatin on myostatin expression was blunted by geranylgeranyl diphosphate (GGPP) supplementation in both myotubes and brown adipocytes, suggesting that GGPP depletion was attributed to simvastatin-induced myostatin expression. Besides, the capacities of statins on stimulating myostatin expression were positively correlated with the lipophilicity of statins. Our findings provide new insights into statin-induced skeletal muscle atrophy. Graphical headlights 1. Simvastatin induces skeletal muscle atrophy via increasing serum myostatin levels in mice; 2. Simvastatin promotes myostatin expression in both skeletal muscle and brown adipose tissue through inhibiting GGPP production; 3. The stimulating effect of statins on myostatin expression is positively correlated with the lipophilicity of statins.


Assuntos
Proteína Forkhead Box O1/genética , Fatores Reguladores de Interferon/genética , Atrofia Muscular/genética , Miostatina/sangue , Sinvastatina/efeitos adversos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/genética , Doenças Musculares/patologia , Miostatina/genética , Fosfatos de Poli-Isoprenil/farmacologia , Sinvastatina/farmacologia
15.
Saudi Pharm J ; 28(11): 1353-1363, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33250642

RESUMO

Atorvastatin (ATO) is of the statin class and is used as an orally administered lipid-lowering drug. ATO is a reversible synthetic competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase thus leading to a reduction in cholesterol synthesis. It has recently been demonstrated that ATO has different pharmacological actions, which are unrelated to its lipid-lowering effects and has the ability to treat chronic airway diseases. This paper reviews the potential of ATO as an anti-inflammatory, antioxidant, and anti-proliferative agent after oral or inhaled administration. This paper discusses the advantages and disadvantages of using ATO under conditions associated with those found in the airways. This treatment could potentially be used to support the formulating of ATO as an inhaler for the treatment of chronic respiratory diseases.

16.
BMC Genomics ; 21(1): 561, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799801

RESUMO

BACKGROUND: GGPP (geranylgeranyl diphosphate) is produced in the isoprenoid pathway and mediates the function of various plant metabolites, which is synthesized by GGPPS (GGPP synthases) in plants. GGPPS characterization has not been performed in any plant species except Arabidopsis thaliana. Here, we performed a complete computational and bioinformatics analysis of GGPPS and detected their transcription expression pattern in Gossypium hirsutum for the first time so that to explore their evolutionary relationship and potential functions. Finally, we unravelled evolutionary relationship, conserved sequence logos, gene duplication and potential involvement in plant development and abiotic stresses tolerance of GGPPS genes in G. hirsutum and other plant species. RESULTS: A total of 159 GGPPS genes from 18 plant species were identified and evolutionary analysis divided these GGPPS genes into five groups to indicate their divergence from a common ancestor. Further, GGPPS family genes were conserved during evolution and underwent segmental duplication. The identified 25 GhGGPPS genes showed diverse expression pattern particularly in ovule and fiber development indicating their vital and divers roles in the fiber development. Additionally, GhGGPPS genes exhibited wide range of responses when subjected to abiotic (heat, cold, NaCl and PEG) stresses and hormonal (BL, GA, IAA, SA and MeJA) treatments, indicating their potential roles in various biotic and abiotic stresses tolerance. CONCLUSIONS: The GGPPS genes are evolutionary conserved and might be involve in different developmental stages and stress response. Some potential key genes (e.g. GhGGPP4, GhGGPP9, and GhGGPP15) were suggested for further study and provided valuable source for cotton breeding to improve fiber quality and resistant to various stresses.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Farnesiltranstransferase , Genoma de Planta , Gossypium/genética , Família Multigênica , Filogenia , Melhoramento Vegetal , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Estresse Fisiológico/genética
17.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751941

RESUMO

Carotenoid biosynthesis in Corynebacteriumglutamicum is controlled by the MarR-type regulator CrtR, which represses transcription of the promoter of the crt operon (PcrtE) and of its own gene (PcrtR). Geranylgeranyl pyrophosphate (GGPP), and to a lesser extent other isoprenoid pyrophosphates, interfere with the binding of CrtR to its target DNA in vitro, suggesting they act as inducers of carotenoid biosynthesis. CrtR homologs are encoded in the genomes of many other actinobacteria. In order to determine if and to what extent the function of CrtR, as a metabolite-dependent transcriptional repressor of carotenoid biosynthesis genes responding to GGPP, is conserved among actinobacteria, five CrtR orthologs were characterized in more detail. EMSA assays showed that the CrtR orthologs from Corynebacteriumcallunae, Acidipropionibacteriumjensenii, Paenarthrobacternicotinovorans, Micrococcusluteus and Pseudarthrobacterchlorophenolicus bound to the intergenic region between their own gene and the divergently oriented gene, and that GGPP inhibited these interactions. In turn, the CrtR protein from C. glutamicum bound to DNA regions upstream of the orthologous crtR genes that contained a 15 bp DNA sequence motif conserved between the tested bacteria. Moreover, the CrtR orthologs functioned in C. glutamicum in vivo at least partially, as they complemented the defects in the pigmentation and expression of a PcrtE_gfpuv transcriptional fusion that were observed in a crtR deletion mutant to varying degrees. Subsequently, the utility of the PcrtE_gfpuv transcriptional fusion and chromosomally encoded CrtR from C. glutamicum as genetically encoded biosensor for GGPP was studied. Combined FACS and LC-MS analysis demonstrated a correlation between the sensor fluorescent signal and the intracellular GGPP concentration, and allowed us to monitor intracellular GGPP concentrations during growth and differentiate between strains engineered to accumulate GGPP at different concentrations.


Assuntos
Actinobacteria/metabolismo , Proteínas de Bactérias/fisiologia , Técnicas Biossensoriais , Carotenoides/metabolismo , Corynebacterium glutamicum/metabolismo , Fosfatos de Poli-Isoprenil/análise , Fatores de Transcrição/fisiologia , Actinobacteria/genética , Sítios de Ligação , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas
18.
Bone ; 139: 115493, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569873

RESUMO

Bisphosphonates (BP) are a class of calcium-binding drug used to prevent bone resorption in skeletal disorders such as osteoporosis and metastatic bone disease. They act by selectively targeting bone-resorbing osteoclasts and can be grouped into two classes depending on their intracellular mechanisms of action. Simple BPs cause osteoclast apoptosis after cytoplasmic conversion into toxic ATP analogues. In contrast, nitrogen-containing BPs potently inhibit FPP synthase, an enzyme of the mevalonate (cholesterol biosynthesis) pathway. This results in production of a toxic metabolite (ApppI) and the loss of long-chain isoprenoid lipids required for protein prenylation, a process necessary for the function of small GTPase proteins essential for the survival and activity of osteoclasts. In this review we provide a state-of-the-art overview of these mechanisms of action and a historical perspective of how they were discovered. Finally, we challenge the long-held dogma that BPs act only in the skeleton and highlight recent studies that reveal insights into hitherto unknown effects on tumour-associated and tissue-resident macrophages.


Assuntos
Reabsorção Óssea , Difosfonatos , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos , Difosfonatos/farmacologia , Humanos , Osteoclastos , Prenilação de Proteína
19.
Mol Ther Methods Clin Dev ; 17: 634-646, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32300610

RESUMO

Adoptive natural killer (NK) cell therapy is attaining promising clinical outcomes in recent years, but improvements are needed. Genetic modification of NK cells with a tumor antigen-specific receptor on their surface coupled to intracellular signaling domains may lead to enhanced cytotoxicity against malignant cells. One of the most common approaches is by lentivirus-mediated transduction. However, NK cells are difficult to transduce and various methods have been attempted with different success rates. Because the low-density lipoprotein-receptor (LDLR) is the receptor of vesicular stomatitis virus (VSV) and is expressed only at low levels on NK cells, we tested the potential of 5 statins and 5 non-statin compounds to increase the LDLR expression, thereby facilitating viral transduction. We found that the transduction efficiency of VSV-G pseudotyped lentivirus is augmented by statins that induced higher LDLR expression. In both NK-92 cells and primary NK cells, the transduction efficiency increased after treatment with statins. Furthermore, statins have been reported to suppress NK cell cytotoxicity; however, we showed that this can be completely reversed by adding geranylgeranyl-pyrophosphate (GGPP). Among the statins tested, we found that the combination of rosuvastatin with GGPP most potently improved viral transduction without affecting the cytotoxic properties of the NK cells.

20.
J Adv Res ; 23: 1-12, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32071787

RESUMO

Salvia miltiorrhiza Bunge is an herb rich in bioactive tanshinone and salvianolic acid compounds. It is primarily used as an effective medicine for treating cardiovascular and cerebrovascular diseases. Liposoluble tanshinones and water-soluble phenolic acids are a series of terpenoids and phenolic compounds, respectively. However, the regulation mechanism for the simultaneous promotion of tanshinone and salvianolic acid biosynthesis remains unclear. This study identified a R2R3-MYB subgroup 20 transcription factor (TF), SmMYB98, which was predominantly expressed in S. miltiorrhiza lateral roots. The accumulation of major bioactive metabolites, tanshinones, and salvianolic acids, was improved in SmMYB98 overexpression (OE) hairy root lines, but reduced in SmMYB98 knockout (KO) lines. The qRT-PCR analysis revealed that the transcriptional expression levels of tanshinone and salvianolic acid biosynthesis genes were upregulated by SmMYB98-OE and downregulated by SmMYB98-KO. Dual-Luciferase (Dual-LUC) assays demonstrated that SmMYB98 significantly activated the transcription of SmGGPPS1, SmPAL1, and SmRAS1. These results suggest that SmMYB98-OE can promote tanshinone and salvianolic acid production. The present findings illustrate the exploitation of R2R3-MYB in terpenoid and phenolic biosynthesis, as well as provide a feasible strategy for improving tanshinone and salvianolic acid contents by MYB proteins in S. miltiorrhiza.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA