Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 675: 904-914, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002240

RESUMO

The commercialization of lithium-sulfur (Li-S) batteries has faced challenges due to the shuttle effect of soluble intermediate polysulfides and the sluggish kinetics of sulfur redox reactions. In this study, a synergistic catalyst medium was developed as a high-performance sulfur cathode material for Li-S batteries. Termed A/R-TiO2@ Ni-N-MXene, this sulfur cathode material features an in-situ derived anatase-rutile homojunction of TiO2 nanoparticles on Ni-N dual-atom-doped MXene nanosheets. Using in-situ transmission electron microscopy (TEM) technique, we observed the growth process of the homojunction for the first time confirming that homojunctions facilitated charge transfer, while dual-atom doping offered abundant active sites for anchoring and converting soluble polysulfides. Theoretical calculations and experiments showed that these synergistic effects effectively mitigated the shuttle effect, leading to improved cycling performance of Li-S batteries. After 500 cycles at a 1C rate, Li-S batteries using A/R-TiO2@Ni-N-MXene as cathode materials exhibited stable and highly reversible capacity with a capacity decay of only 0.056 % per cycle. Even after 150 cycles at a 0.1C rate, a high-capacity retention rate of 62.8 % was achieved. Additionally, efficient sulfur utilization was observed, with 1280.76 mA h/g at 0.1C, 694.24 mA h/g at 1C, alongside a sulfur loading of 1.5-2 mg/cm2. The effective strategy based on homojunctions showcases promise for designing high-performance Li-S batteries.

2.
J Colloid Interface Sci ; 673: 985-996, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38959699

RESUMO

Due to the high dissociation energy of carbon dioxide (CO2) and sluggish charge transfer dynamics, photocatalytic CO2 reduction with high performance remains a huge challenge. Herein, we report a novel dual-homojunction photocatalyst comprising of cyano/cyanamide groups co-modified carbon nitride (CN-TH) intramolecular homojunction and 1 T/2H-MoSe2 homojunction (denoted as 1 T/2H-MoSe2/CN-TH) for enhanced photocatalytic CO2 reduction. In this dual-homojunction photocatalyst, the intramolecular CN-TH homojunction could promote the intralayer charge separation and transfer owing to the strong electron-withdrawing capabilities of the two-type cyanamide, while the 1 T/2H-MoSe2 homojunction mainly contributes to a promote interlayer charge transport of CN-TH. This could consequently induce a tandem multi-step charge transfer and accelerate the charge transfer dynamics, resulting in enhanced CO2 reduction activities. Thanks to this tandem multi-step charge transfer, the optimized 1 T/2H-MoSe2/CN-TH dual-homojunction photocatalyst presented a high CO yield of 27.36 µmol·g-1·h-1, which is 3.58 and 2.87 times higher than those of 1 T/2H-MoSe2/CN and 2H-MoSe2/CN-TH single homojunctions, respectively. This work provides a novel strategy for efficient CO2 reduction via achieving a tandem multi-step charge transfer through designing dual-homojunction photocatalyst.

3.
Heliyon ; 10(11): e31193, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828347

RESUMO

The pursuit of enhancing the performance of silicon-based solar cells is pivotal for the progression of solar photovoltaics as the most potential renewable energy technologies. Despite the existence of sophisticated methods like diffusion and ion implantation for doping phosphorus into p-type silicon wafers in the semiconductor industry, there is a compelling need to research spin-on doping techniques, especially in the context of tandem devices, where fabricating the bottom cell demands meticulous control over conditions. The primary challenge with existing silicon cell fabrication methods lies in their complexity, cost, and environmental concerns. Thus, this research focuses on the optimization of parameters, such as, deposition of the spin on doping layer, emitter thickness (Xj), and dopant concentration (ND) to maximize solar cell efficiency. We utilized both fabrication and simulation techniques to delve into these factors. Employing silicon wafer thickness of 625 µm, the study explored the effects of altering the count of dopant layers through the spin-on dopant (SOD) technique in the device fabrication. Interestingly, the increase of the dopant layers from 1 to 4 enhances efficiency, whereby, further addition of 6 and 8 layers worsens both series and shunt resistances, affecting the solar cell performance. The peak efficiency of 11.75 % achieved in fabrication of 4 layers dopant. By using device simulation with wxAMPS to perform a combinatorial analysis of Xj and ND, we further identified the optimal conditions for an emitter to achieve peak performance. Altering Xj between 0.05 µm and 10 µm and adjusting ND from 1e+15 cm-3 to 9e+15 cm-3, we found that maximum efficiency of 14.18 % was attained for Xj = 1 µm and ND = 9e+15 cm-3. This research addresses a crucial knowledge gap, providing insights for creating more efficient, cost-effective, and flexible silicon solar cells, thereby enhancing their viability as a sustainable energy source.

4.
J Environ Manage ; 365: 121605, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944962

RESUMO

The interfacial charge transfer ability is a decisive factor influencing the photocatalytic performance of composite photocatalysts. Compared with heterojunctions that combine two or more semiconductors with different properties, homojunctions that combine two semiconductors with similar properties can accelerate the interfacial charge shift and achieve higher photocatalyticability. In this study, a Zn3In2S6/ZnIn2S4 homojunction photocatalyst (ZIS-5) with a Zn3In2S6 to ZnIn2S4 molar ratio of 5:1 was synthesized by selecting Zn3In2S6 nano-microspheres as the substrate material and growing ZnIn2S4 flocs on the nano-microspheres. The photocatalytic performance of the ZIS-5 homojunction was assessed by using tetracycline (TC) as a typical pollutant. The photocatalytic performance and mineralization rate of the ZIS-5 homojunction were significantly improved compared with those of Zn3In2S6 and ZnIn2S4, and its photocatalytic performance was increased by 10.2% and 20.9%, compared with Zn3In2S6 and ZnIn2S4, respectively, while the mineralization rate was enhanced by 22.78% and 43.28%, respectively. The results of the comparison experiment revealed that the interfacial electron transfer ability of the ZIS-5 homojunction is 1.6 times that of the g-C3N4/ZnIn2S4-5 heterojunction. The density functional theory (DFT) computation and Mott-Schottky plots verified the formation of an internal electric field. The toxicity analysis showed that the ZIS-5 homojunction system effectively reduced the toxicity of TC. This work supplies a valuable route for inventing catalysts with efficient photocatalytic performances.


Assuntos
Tetraciclina , Catálise , Tetraciclina/química , Luz , Zinco/química
5.
J Colloid Interface Sci ; 674: 547-559, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943915

RESUMO

The targeted conversion of toxic nitroarenes to corresponding aminoarenes presents significant promise in simultaneously addressing environmental pollution concerns and producing value-added fine chemicals. In this study, we synthesize a 0D/2D ZnIn2S4 homojunction (CH-ZnIn2S4) by in situ growth of cubic ZnIn2S4 (C-ZnIn2S4) quantum dots onto the surface of ultrathin hexagonal ZnIn2S4 (H-ZnIn2S4) nanosheets for photocatalytic reduction of nitroarenes to aminoarenes using water as a hydrogen donor. The optimal performance of photocatalytic nitro reduction over the 0D/2D CH-ZnIn2S4 homojunction reaches 96.1% within 20 min of visible light irradiation, which is 2.45 and 1.52 times than that of C-ZnIn2S4 (39.3%) and H-ZnIn2S4 (63.3%), respectively. The improved photocatalytic performance can be attributed to the formation of a step-type S-scheme homojunction, characterized by identity chemical composition and natural lattice matching. The configuration enables continuous band bending and a low energy barrier of charge transportation, benefiting the charge transfer across the interface while maximizing their redox capabilities. Furthermore, the 2D structure of H-ZnIn2S4 nanosheets offers abundant surface sites to immobilize the 0D C-ZnIn2S4 that provides ample exposed active sites with low overpotential for HER, thereby ensuring high hydrogenation reduction activity of nitroarenes. The study is expected to inspire further interest in the reasonable design of homojunction structures for efficient and sustainable photocatalytic redox reactions.

6.
Nanomicro Lett ; 16(1): 191, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700650

RESUMO

Low-temperature processed electron transport layer (ETL) of TiO2 that is widely used in planar perovskite solar cells (PSCs) has inherent low carrier mobility, resulting in insufficient photogenerated electron transport and thus recombination loss at buried interface. Herein, we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO2 ETL to accelerate electron transport in PSCs, through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude. Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO2 ETL, but the fabrication of perovskite films with larger-grain and the less-trap-states. The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs, favoring for the reduced voltage deficit of PSCs. Benefiting from these merits, the formamidinium lead iodide (FAPbI3) PSCs employing such ETLs deliver a champion efficiency of 25.50%, along with much-improved device stability under harsh conditions, i.e., maintain over 95% of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h, as well as mixed-cation PSCs with a champion efficiency of 22.02% and over 3000 h of ambient storage under humidity stability of 40%. Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.

7.
Heliyon ; 10(9): e29894, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707437

RESUMO

To improve the photocatalytic property of TiO2 thin films, the composite thin films of TiO2/Nd2O3 structure were fabricated by electron-beam physical vapor deposition method, and the photocatalytic property of the fabricated films was experimentally studied in the present work. The XRD and Raman analyses show that the TiO2/Nd2O3 films are mainly hexagonal crystalline phase of Nd2O3. The XPS analysis for the chemical state changes of Ti, O and Nd of the basic elements in the films is confirming the electron flow in the internal electric field which generated in the TiO2/Nd2O3 films. The surface morphology shows the lattice distortion which affects the changes in the energy band structure. Moreover, the formation of n-n homojunctions improved the separation efficiency of electrons and holes, and enhanced the catalytic activity. The photocatalytic performance for the methylene blue target dye shows that the sample with TiO2 thickness of 20-25 nm has better performance, high degradation efficiency and high reaction rate.

8.
J Colloid Interface Sci ; 669: 366-382, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38718590

RESUMO

In this study, metal-free PO43- enriched g-C3N4/g-C3N4 (PGCN) homojunction alginate 3D beads were developed for in-situ H2O2 production under visible light. Later, the photocatalytic-self-Fenton system was integrated with peroxymonosulfate for tetracycline degradation. Initially, the PO43- enriched g-C3N4 (PCN) and a homojunction composed of PCN and g-C3N4 (GCN) were prepared via the wet-impregnation method. Later, PGCN homojunction was formulated into 3D alginate beads through the blend-crosslinking method. The comprehensive characterization of the homojunction beads affirmed the closer contact between the semiconductors, alteration of the bandgap, faster channelization of electron-hole pairs, and improved separation of charge carriers that attributed to higher catalytic efficacy. The PGCN beads exhibited a maximum H2O2 production of 535 ± 12 µM under visible light irradiation for 60 min. The homojunction hydrogels displayed 99 ± 0.25 % tetracycline degradation in 20 min in the photocatalytic-self-Fenton-PMS system. The experimental studies also claimed a maximum chemical oxygen demand removal of 81 ± 3.6 % in 20 min with maximum reusability of beads up to 20 cycles. The Z-scheme electron migration mechanism is proposed based on the results aided by scavenger and electron spin resonance analysis. Overall, the as-synthesized alginate-supported homojunction-based photocatalytic-self-Fenton-peroxymonosulfate system is highly versatile and reusable for energy and environmental remediation.

9.
Small ; : e2402219, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634337

RESUMO

In this work, an intramolecular carbon nitride (CN)-based quaternary homojunction functionalized with pyridine rings is prepared via an in situ alkali-assisted copolymerization strategy of bulk CN and 2-aminopyridine for efficient visible light hydrogen generation. In the obtained structure, triazine-based CN (TCN), heptazine-based CN (HCN), pyridine unit incorporated TCN, and pyridine ring inserted HCN constitute a special multicomponent system and form a built-in electric field between the crystalline semiconductors by the arrangement of energy band levels. The electron-withdrawing function of the conjugated heterocycle can trigger the skeleton delocalization and edge induction effect. Highly accelerated photoelectron-hole transfer rates via multi-stepwise charge migration pathways are achieved by the synergistic effect of the functional group modification and molecular quaternary homojunction. Under the addition of 5 mg 2-aminopyridine, the resulting homojunction framework exhibits a significantly improved hydrogen evolution rate of 6.64 mmol g-1 h-1 with an apparent quantum efficiency of 12.27% at 420 nm. Further, the catalyst verifies its potential commercial value since it can produce hydrogen from various real water environments. This study provides a reliable way for the rational design and fabrication of intramolecular multi-homojunction to obtain high-efficient photocatalytic reactions.

10.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38634689

RESUMO

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

11.
J Colloid Interface Sci ; 668: 161-170, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677205

RESUMO

CO2-to-high value-added chemicals via a photocatalytic route is of interest but strangled by the low efficiency. Herein, a novel Fe-TiO2-x/TiO2 S-scheme homojunction was designed and constructed by using a facile surface modification approach whereby oxygen vacancy (OV) and Fe introducing on the TiO2 nanorod surface. The as-synthesized Fe-TiO2-x/TiO2 S-scheme homojunction exhibits positive properties on promoting photocatalytic CO2 reduction: i) the nanorod structure provides numerous active sites and a radical charge transfer path; ii) the doped Fe and OV not only synergistically enhance light utilization but also promote CO2 adsorption; iii) the Fe-TiO2-x/TiO2 S-scheme homojunction benefits photoexcited charge separation and retains stronger redox capacity. Thanks to those good characters, the Fe-TiO2-x/TiO2 homojunction exhibits superior CO2 reduction performances with optimized CO/CH4 generation rates of 122/22 µmol g-1h-1 which exceed those of pure TiO2 by more than 9.4/7.3 folds and most currently reported catalytic systems. This manuscript develops a facile and universal approach to synthesize well-defined homojunction and may inspire the construction of other more high-efficiency photocatalysts toward CO2 reduction and beyond.

12.
ACS Sens ; 9(5): 2429-2439, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38668680

RESUMO

Norovirus (NoV) stands as a significant causative agent of nonbacterial acute gastroenteritis on a global scale, presenting a substantial threat to public health. Hence, the development of simple and rapid analytical techniques for NoV detection holds great importance in preventing and controlling the outbreak of the epidemic. In this work, a self-powered photoelectrochemical (PEC) immunosensor of NoV capsid protein (VP1) was proposed by the π-electron-rich carbon nitride homojunction (ER-CNH) as the photoanode. C4N2 ring derived from π-rich locust bean gum was introduced into the tri-s-triazine structure, creating a large π-delocalized conjugated carbon nitride homojunction. This strategy enhances the C/N atomic ratio, which widens light utilization, narrows the bandgap, and optimizes the electronic band structure of carbon nitride. By introduction of a π-rich conjugated structure, p-type domains were induced within n-type domains to build the internal electric field at the interface, thus forming a p-n homojunction to boost carrier separation and transfer. The ER-CNH photoanode exhibited excellent photoelectric performance and water oxidation capacity. Since VP1 inhibits the water oxidation of the ER-CNH photoanode, the open-circuit potential of the as-prepared PEC immunosensor system was reduced for detecting NoV VP1. The self-powered PEC immunosensor achieved a remarkably low detection limit (∼5 fg mL-1) and displayed high stability and applicability for actual stool samples. This research serves as a foundation concept for constructing immunosensors to detect other viruses and promotes the application of self-powered systems for life safety.


Assuntos
Técnicas Eletroquímicas , Fezes , Norovirus , Norovirus/imunologia , Norovirus/isolamento & purificação , Norovirus/química , Imunoensaio/métodos , Humanos , Fezes/virologia , Fezes/química , Técnicas Eletroquímicas/métodos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Nitrilas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Elétrons
13.
Nanomaterials (Basel) ; 14(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535640

RESUMO

Construction of a homojunction is an effective strategy for effective charge transfer to suppress charge carrier recombination in augmented photocatalysis. The present work reveals the synthesis of homojunction formation through the reinforcement of Cd nanostructures into a solid lattice of zinc vanadate (Zn3V2O8, ZnV) using the hydrothermal method. The formation of a homojunction between cadmium vanadate (CdV, Cd3V2O8) and ZnV was confirmed by various spectroscopic and electron microscopic techniques such as Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) associated with energy-dispersive X-ray (EDX) mapping, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible spectrophotometry (UV-Vis). The synthesized material was explored for photocatalytic hydrogen (PC H2) production using the water splitting process under visible-light illumination. The spectroscopic and experimental results revealed that the formation of a CdV/ZnV homojunction significantly improved the transport of photogenerated charge carriers (electron-hole pairs) and thus resulted in enhanced H2 production efficiency (366.34 µmol g-1 h-1) as compared to pristine ZnV (229.09 µmol g-1 h-1) and CdV (274.91 µmol g-1 h-1) using methanol as a sacrificial reagent (SR) with water under visible-light illumination. The synergistic effect of Cd on ZnV NPs resulted in band gap reduction and broadened visible light absorption which was attributed to enhanced H2 production. The current study explains how a homojunction affects various features of important factors behind photocatalytic activity, which supports significant insights into the advancement of materials in the future.

14.
Small ; 20(33): e2400780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38554020

RESUMO

Developing efficient homojunctions on g-C3N4 promises metal-free photocatalysis to realize truly sustainable artificial photosynthesis. However, current designs are limited by hindered charge separation due to inevitable grain boundaries and random formation of ineffective homojunctions embedded within the photocatalyst. Here, efficient photocatalysis is driven by introducing effective surface homojunctions on chemically and structurally identical g-C3N4 through leveraging its size-dependent electronic properties. Using a top-down approach, the surface layer of bulk g-C3N4 is partially exfoliated to create sheet-like g-C3N4 nanostructures on the bulk material. This hierarchical design establishes a subtle band energy offset between the macroscopic and nanoscopic g-C3N4, generating homojunctions while maintaining the chemical and structural integrities of the original g-C3N4. The optimized g-C3N4 homojunction demonstrates superior photocatalytic degradation of antibiotic pollutants at >96% efficiency in 2 h, even in different real water samples. It achieves reaction kinetics (≈0.041 min-1) up to fourfold better than standalone materials and their physical mixture. Mechanistic studies highlight the importance of the unique design in boosting photocatalysis by effectively promoting interfacial photocarrier manipulation and utilization directly at the point-of-catalysis, without needing co-catalysts or sacrificial agents. This work presents enormous opportunities for developing advanced and green photocatalytic platforms for sustainable light-driven environmental, energy, and chemical applications.

15.
Adv Sci (Weinh) ; 11(17): e2400099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417112

RESUMO

Metal sulfide-based homojunction photocatalysts are extensively explored with improved photocatalytic performance. However, the construction of metal sulfide-based S-scheme homojunction remains a challenge. Herein, the fabrication of 2D CdIn2S4 nanosheets coated 3D CdIn2S4 octahedra (referred to as 2D/3D n-CIS/o-CIS) S-scheme homojunction photocatalyst is reported by simply adjustment of polyvinyl pyrrolidone amount during the solvothermal synthesis. The formation of S-scheme homojunction within n-CIS/o-CIS is systematically investigated via a series of characterizations, which can generate an internal electric field to facilitate the separation and migration of photogenerated electron-hole pairs. The 2D/3D n-CIS/o-CIS composite exhibits significantly improved photocatalytic activity and stability in the selective oxidation of phenylcarbinol (PhCH2OH) to benzaldehyde (PhCHO) when compared to pure n-CIS and o-CIS samples under visible light irradiation. It is hoped that this work can contribute novel insights into the development of metal sulfides S-scheme homojunction photocatalysts for solar energy conversion.

16.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339694

RESUMO

Metal oxide semiconductor hetero- and homojunctions are commonly constructed to improve the performance of hydrogen sensors at room temperature. In this study, a simple two-step hydrothermal method was employed to prepare TiO2 films with homojunctions of rutile and anatase phases (denoted as TiO2-R/A). Then, the microstructure of anatase-phase TiO2 was altered by controlling the amount of hydrochloric acid to realize a more favorable porous structure for charge transport and a larger surface area for contact with H2. The sensor used a Pt interdigital electrode. At an optimal HCl dosage (25 mL), anatase-phase TiO2 uniformly covered rutile-phase TiO2 nanorods, resulting in a greater response to H2 at 2500 ppm compared with that of a rutile TiO2 nanorod sensor by a factor of 1153. The response time was 21 s, mainly because the homojunction formed by the TiO2 rutile and anatase phases increased the synergistic effect of the charge transfer and potential barrier between the two phases, resulting in the formation of more superoxide (O2-) free radicals on the surface. Furthermore, the porous structure increased the surface area for H2 adsorption. The TiO2-R/A-based sensor exhibited high selectivity, long-term stability, and a fast response. This study provides new insights into the design of commercially competitive hydrogen sensors.

17.
Adv Mater ; 36(15): e2309672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206096

RESUMO

Development of both organic photovoltaics (OPVs) and organic photocatalysts has focused on utilizing the bulk heterojunction (BHJ). The BHJ promotes charge separation and enhances the carrier lifetime, but may give rise to increased charge traps, hindering performance. Here, high photocatalytic and photovoltaic performance is displayed by electron donor-acceptor (D-A) nanoparticles (NPs) and films, using the nonfullerene acceptor Y6 and polymer donor PIDT-T8BT. In contrast to conventional D-A systems, the charge generation in PIDT-T8BT:Y6 NPs is mainly driven by Y6, allowing a high performance even at a low D:A mass ratio of 1:50. The high performance at the low mass ratio is attributed to the amorphous behavior of PIDT-T8BT. Low ratios are generally thought to yield lower efficiency than the more conventional ≈1:1 ratio. However, the OPVs exhibit peak performance at a D:A ratio of 1:5. Similarly the NPs used for photocatalytic hydrogen evolution show peak performance at the 1:6.7 D:A ratio. Interestingly, for the PIDT-T8BT:Y6 system, as the polymer proportion increases, a reduced photocatalytic and photovoltaic performance is observed. The unconventional D:A ratios provide lower recombination losses and increased charge-carrier lifetime with undisrupted ambipolar charge transport in bulk Y6, enabling better performance than conventional ratios. This work reports novel light-harvesting materials in which performance is reduced due to unfavorable morphology as D:A ratios move toward conventional ratios of 1:1.2-1:1.

18.
Micromachines (Basel) ; 14(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38138313

RESUMO

The zinc-tin-oxide (ZTO) thin-film transistor (TFT) is one of the most promising candidates for advanced display applications, though its popularity is limited by its performances. In this work, a heterojunction channel strategy was adopted to regulate the electron transport behaviors and the TFT performances by manipulating the concentration and the distribution of oxygen vacancies, and a reasonable physical model was proposed based on experimental and simulation results. It is difficult to mediate the contradiction between mobility and threshold voltage for the single channel. Via a heterojunction channel strategy, desirable TFT performances, with mobility of 12.5 cm2/Vs, threshold voltage of 1.2 V and Ion/Ioff of 3 × 109, are achieved when the oxygen-vacancy-enriched layer gets close to the gate insulator (GI). The enhanced performances can be mainly attributed to the formation of two-dimensional electron gas (2DEG), the insensitive potential barrier and the reasonable distribution of oxygen vacancy. On the contrary, when the oxygen-vacancy-enriched layer stays away from GI, all the main performances degenerate due to the vulnerable potential well. The findings may facilitate the development and application of heterojunction channels for improving the performances of electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA