Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Appl Clin Med Phys ; 25(6): e14277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243604

RESUMO

PURPOSE: This study aimed to improve the safety and accuracy of radiotherapy by establishing tolerance (TL) and action (AL) limits for the gamma index in patient-specific quality assurance (PSQA) for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) using SunCHECK software, as per AAPM TG-218 report recommendations. METHODS: The study included 125 patients divided into six groups by treatment regions (H&N, thoracic and pelvic) and techniques (VMAT, IMRT). SunCHECK was used to calculate the gamma passing rate (%GP) and dose error (%DE) for each patient, for the planning target volume and organs at risk (OARs). The TL and AL were then determined for each group according to TG-218 recommendations. We conducted a comprehensive analysis to compare %DE among different groups and examined the relationship between %GP and %DE. RESULTS: The TL and AL of all groups were more stringent than the common standard as defined by the TG218 report. The TL and AL values of the groups differed significantly, and the values for the thoracic groups were lower for both VMAT and IMRT. The %DE of the parameters D95%, D90%, and Dmean in the planning target volume, and Dmean and Dmax in OARs were significantly different. The dose deviation of VMAT was larger than IMRT, especially in the thoracic group. A %GP and %DE correlation analysis showed a strong correlation for the planning target volume, but a weak correlation for the OARs. Additionally, a significant correlation existed between %GP of SunCHECK and Delta4. CONCLUSION: The study established TL and AL values tailored to various anatomical regions and treatment techniques at our institution. Establishing PSQA workflows for VMAT and IMRT offers valuable clinical insights and guidance. We also suggest developing a standard combining clinically relevant metrics with %GP to evaluate PSQA results comprehensively.


Assuntos
Órgãos em Risco , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Órgãos em Risco/efeitos da radiação , Software , Raios gama , Neoplasias/radioterapia , Guias de Prática Clínica como Assunto/normas
2.
J Appl Clin Med Phys ; 25(1): e14229, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032123

RESUMO

BACKGROUND: Pulsed reduced dose rate (PRDR) is an emerging radiotherapy technique for recurrent diseases. It is pertinent that the linac beam characteristics are evaluated for PRDR dose rates and a suitable dosimeter is employed for IMRT QA. PURPOSE: This study sought to investigate the pulse characteristics of a 6 MV photon beam during PRDR irradiations on a commercial linac. The feasibility of using EBT3 radiochromic film for use in IMRT QA was also investigated by comparing its response to a commercial diode array phantom. METHODS: A plastic scintillator detector was employed to measure the photon pulse characteristics across nominal repetition rates (NRRs) in the 5-600 MU/min range. Film was irradiated with dose rates in the 0.033-4 Gy/min range to study the dose rate dependence. Five clinical PRDR treatment plans were selected for IMRT QA with the Delta4 phantom and EBT3 film sheets. The planned and measured dose were compared using gamma analysis with a criterion of 3%/3 mm. EBT3 film QA was performed using a cumulative technique and a weighting factor technique. RESULTS: Negligible differences were observed in the pulse width and height data between the investigated NRRs. The pulse width was measured to be 3.15 ± 0.01 µ s $\mu s$ and the PRF was calculated to be 3-357 Hz for the 5-600 MU/min NRRs. The EBT3 film was found to be dose rate independent within 3%. The gamma pass rates (GPRs) were above 99% and 90% for the Delta4 phantom and the EBT3 film using the cumulative QA method, respectively. GPRs as low as 80% were noted for the weighting factor EBT3 QA method. CONCLUSIONS: Altering the NRRs changes the mean dose rate while the instantaneous dose rate remains constant. The EBT3 film was found to be suitable for PRDR dosimetry and IMRT QA with minimal dose rate dependence.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosimetria Fotográfica/métodos , Radiometria , Raios gama , Fótons
3.
Phys Med ; 116: 103168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984129

RESUMO

The dosimetry audit services were established in Poland in 1991, since then new audits have been introduced. The recently developed IAEA audit methodology for IMRT H&N treatments was tested nationally. Anthropomorphic SHANE phantom (CIRS) was used to perform measurements in 8 hospitals which voluntarily participated in the study. Each participant had to complete successfully pre-visit activities to take part in an onsite visit. During the visit, auditors together with the local staff, did a CT scan using local protocol, recalculated the plan and verified all the relevant parameters and performed measurements with an ionization chamber and films in SHANE. The adoption of IAEA methodology to the national circumstances was done with no major issues. Participants plans were verified and the results of ionization chamber were all within the 5 % tolerance limit for PTV (max 4,5%) and 7 % for OAR (max 5,3%). Film global gamma results (3 %, 3 mm, 90 % acceptance limit) were within 91,5-99,7% range. The IAEA established acceptance criteria which were achievable for most tests except for CTtoRED conversion curve. The locally performed study allowed establishing new limits. The audit gave interesting results and showed that the procedure is very thorough and capable to identify issues related with suboptimal treatment preparation and delivery. The new limits for CTtoRED conversion curve were adopted for national study. Such an audit gives an opportunity to verify the quality of locally implemented procedures and should be available for Polish hospitals on a daily basis.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Polônia , Radiometria/métodos , Imagens de Fantasmas , Dosagem Radioterapêutica
4.
Front Oncol ; 13: 1094927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546404

RESUMO

Objective: To predict the gamma passing rate (GPR) in dosimetric verification of intensity-modulated radiotherapy (IMRT) using three machine learning models based on plan complexity and find the best prediction model by comparing and evaluating the prediction ability of the regression and classification models of three classical algorithms: artificial neural network (ANN), support vector machine (SVM) and random forest (RF). Materials and methods: 269 clinical IMRT plans were chosen retrospectively and the GPRs of a total of 2340 fields by the 2%/2mm standard at the threshold of 10% were collected for dosimetric verification using electronic portal imaging device (EPID). Subsequently, the plan complexity feature values of each field were extracted and calculated, and a total of 6 machine learning models (classification and regression models for three algorithms) were trained to learn the relation between 21 plan complexity features and GPRs. Each model was optimized by tuning the hyperparameters and ten-fold cross validation. Finally, the GPRs predicted by the model were compared with measured values to verify the accuracy of the model, and the evaluation indicators were applied to evaluate each model to find the algorithm with the best prediction performance. Results: The RF algorithm had the optimal prediction effect on GPR, and its mean absolute error (MAE) on the test set was 1.81%, root mean squared error (RMSE) was 2.14%, and correlation coefficient (CC) was 0.72; SVM was the second and ANN was the worst. Among the classification models, the RF algorithm also had the optimal prediction performance with the highest area under the curve (AUC) value of 0.80, specificity and sensitivity of 0.80 and 0.68 respectively, followed by SVM and the worst ANN. Conclusion: All the three classic algorithms, ANN, SVM, and RF, could realize the prediction and classification of GPR. The RF model based on plan complexity had the optimal prediction performance which could save valuable time for quality control workers to improve quality control efficiency.

5.
Phys Med ; 112: 102651, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37562233

RESUMO

Monitoring Radiotherapy Quality Assurance (QA) using Statistical Process Control (SPC) methods has gained wide acceptance. The significance of understanding the SPC methodologies has increased among the medical physics community with the release of Task Group (TG) reports from the American Association of Physicists in Medicine (AAPM) on patient-specific QA (PSQA) (TG-218) and Proton therapy QA (TG-224). Even though these reports recommend using SPC for QA analysis, physicists have ambiguities and doubts in choosing proper SPC tools and methodologies. This review article summarises the utilisation of SPC methods for different Radiotherapy QAs published in the literature, such as PSQA, routine Linac QA and patient positional verification. QA analysis using SPC could assist the user in distinguishing between 'special' and 'routine' sources of variations in the QA, which can aid in reducing actions on false positive QA results. For improved PSQA monitoring, machine-specific, site-specific, and technique-specific Tolerance Limits and Action Limits derived from a two-stage SPC-based approach can be used. Adopting a combination of Shewhart's control charts and time-weighted control charts for routine Linac QA monitoring could add more insights to the QA process. Incorporating SPC tools into existing image review modules or introducing new SPC software packages specifically designed for clinical use can significantly enhance the image review process. Proper selection and having adequate knowledge of SPC tools are essential for efficient QA monitoring, which is a function of the type of QA data available, and the magnitude of process drift to be monitored.

6.
Med Phys ; 50(9): 5387-5397, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37475493

RESUMO

BACKGROUND: Many commercial tools are available for plan-specific quality assurance (QA) of radiotherapy plans, with their functionality assessed in isolation. However, multiple QA tools are required to review the full range of potential errors. It is important to assess their effectiveness in combination with each other to look for ways to both streamline the QA process and to make certain that errors of high impact and/or high occurrence are caught before reaching patient treatment. PURPOSE: To develop a structured method to assess the effective risk reduction of combinations of QA methods for IMRT/VMAT treatments. METHODS: First, a structured prospective risk assessment was performed to establish the major failure modes (FMs) of IMRT/VMAT QA, and assign occurrence (O), severity (S), and baseline detectability (BD) rankings to them. The baseline assumed that chart checks and linear accelerator QA was performed, but no plan-specific secondary dose calculation or measurement was done. Second, the detectability of each FM for two secondary dose calculation methods and four plan measurement methods (point-based dose calculation, Monte-Carlo-based dose calculation, 2D fluence-based measurement, 2.5D phantom-based measurement, log file analysis with dose recalculation, and log file analysis combined with MLC QA) was determined. Third, we used a minimum detectability approach in addition to each FM's occurrence and severity to determine the optimal combination of QA methods. We analyzed the cumulative risk priority number of eight combinations of QA methods. The analysis was done on (1) all FMs, (2) FMs with high severity, (3) FMs with high-risk priority numbers (RPN) of O*S*BD, and (4) on FMs with both high severity and high RPN. RESULTS: Our analysis resulted in 54 FMs, including commissioning, planning, data transfer, and linear accelerator failures. 1D secondary dose calculation plus measurement provided a 19%-22% risk reduction from baseline. 1D/3D secondary dose calculation plus log files created a 25%-32% reduction. 3D secondary dose calculation plus measurement resulted in a 27%-34% reduction. 3D secondary dose calculation plus log files with additional machine QA provided the greatest reduction of 31%-42%. CONCLUSION: This novel structured approach to comparing combinations of QA methods will allow us to optimize our procedures, with the goal of detecting all clinically significant FMs. Our results show that log-file QA with 3D dose recalculation and supplemental machine QA provides better risk reduction than measurement-based QA. This work builds evidence to justify reducing or eliminating measurement-based PSQA with an independent 3D dose verification, log-file measurement, and appropriate supplementation of machine QA. The process also highlights FMs that cannot be caught by pre-treatment QA, prompting us to consider future directions for on-treatment QA.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Prospectivos , Dosagem Radioterapêutica , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde
7.
Med Phys ; 50(6): 3671-3686, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36959166

RESUMO

BACKGROUND: While many have speculated on the reasons for gamma comparison insensitivity for patient-specific quality assurance analysis, the true reasons for insensitivity have not yet been elucidated. Failing to understand the reasons for this technique's insensitivity limits our ability to either improve the gamma metric to increase sensitivity of the comparison or the capacity to develop new comparison techniques that circumvent the limitations of the gamma comparison. PURPOSE: To understand the underlying cause(s) for gamma comparison insensitivity and determine if simple plan characteristics can quantitatively predict for gamma comparison sensitivity. METHODS: Known MLC and MU errors of varying magnitudes were induced on simple test fields to preliminarily investigate where gamma failures first begin to appear as error magnitude is increased. Gamma value maps between error-induced plan calculations and error-free plan calculations were created for 20 IMRT and 20 VMAT cases, each on three different detector geometries-ArcCHECK, MapCHECK, and Delta4. Gamma value maps were qualitatively compared to dose-gradient maps, and quantitative comparisons were performed between various plan descriptors and the computed gamma sensitivity for five different classes of induced errors were utilized to determine if any plan descriptor could predict the gamma sensitivity on a case-by-case basis. All comparisons were performed in a calculation-only scenario to remove uncertainties introduced by comparisons made with real patient specific QA measurements. RESULTS: Gamma value maps with increasing induced error magnitude illustrated that gamma comparisons fail first in high-dose, low-gradient regions of the field. Conversely, in areas of high gradient, gamma values typically remain low, even in the presence of large errors, regardless of detector geometry and gamma normalization setting. Thus, the complex, and often overlapping, high dose gradients in plans appear to be a limiting factor in gamma comparison sensitivity as the number of points along these gradients may often outnumber the points available for failing the comparison in lower gradient regions of the field. None of the simple plan descriptors studied were able to quantitively predict gamma comparison sensitivity, suggesting that quantitatively predicting the sensitivity of gamma comparisons on a case-by-case basis may require a combination of multiple factors or metrics not studied here. CONCLUSIONS: Simple plan descriptors and the number of points in high-dose, low-gradient regions of the field did not quantitively predict for gamma comparison sensitivity. However, it is clear from gradient and gamma value maps that gamma comparisons fail first in high-dose, low-gradient regions of the field in the presence of known induced errors, which we have shown to be independent of detector geometry and gamma comparison normalization setting. Gamma comparison sensitivity is thus limited by the ever-increasing complexity of plans and is particularly important to consider as treatment volumes become smaller and the complexity of overlapping plan gradients increases. This suggests that new methods for patient-specific QA comparisons are required to circumvent this limitation.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Benchmarking , Raios gama , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radiometria
8.
J Appl Clin Med Phys ; 24(3): e13858, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36583305

RESUMO

PURPOSE: Patient Specific QA (PSQA) by direct phantom measurement for all intensity modulated radiation therapy (IMRT) cases is labor intensive and an inefficient use of the Medical Physicist's time. The purpose of this work was to develop a hybrid quality assurance (QA) technique utilizing 3D dose verification as a screening tool to determine if a measurement is necessary. METHODS: This study utilized Sun Nuclear DoseCHECK (DC), a 3D secondary verification software, and Fraction 0, a trajectory log IMRT QA software. Twenty-two Lung stereotactic body radiation therapy (SBRT) and thirty single isocentre multi-lesion SRS (MLSRS) plans were retrospectively analysed in DC. Agreement of DC and the TPS dose for selected dosimetric criteria was recorded. Calculated 95% confidence limits (CL) were used to establish action limits. All cases were delivered and measured using the Sun Nuclear stereotactic radiosurgery (SRS) MapCheck. Trajectory logs of the delivery were used to calculate Fraction 0 results for the same criteria calculated by DC. Correlation of DC and Fraction 0 results were calculated. Phantom measured QA was compared to Fraction 0 QA results for the cases which had DC criteria action limits exceeded. RESULTS: Correlation of DC and Fraction 0 results were excellent, demonstrating the same action limits could be used for both and DC can predict Fraction 0 results. Based on the calculated action limits, zero lung SBRT cases and six MLSRS cases were identified as requiring a measurement. All plans that passed the DC screening had a passing measurement based PSQA and agreed with Fraction 0 results. CONCLUSION: Using 95% CL action limits of dosimetric criteria, a 3D secondary dose verification can be used to determine if a measurement is required for PSQA. This method is efficient for it is part of the normal clinical workflow when verifying any clinical treatment. In addition, it can drastically reduce the number of measurements needed for PSQA.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
9.
J Appl Clin Med Phys ; 24(2): e13820, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36325743

RESUMO

PURPOSE: To develop an independent log file-based intensity-modulated radiation therapy (IMRT) quality assurance (QA) tool for the 0.35 T magnetic resonance-linac (MR-linac) and investigate the ability of various IMRT plan complexity metrics to predict the QA results. Complexity metrics related to tissue heterogeneity were also introduced. METHODS: The tool for particle simulation (TOPAS) Monte Carlo code was utilized with a previously validated linac head model. A cohort of 29 treatment plans was selected for IMRT QA using the developed QA tool and the vendor-supplied adaptive QA (AQA) tool. For 27 independent patient cases, various IMRT plan complexity metrics were calculated to assess the deliverability of these plans. A correlation between the gamma pass rates (GPRs) from the AQA results and calculated IMRT complexity metrics was determined using the Pearson correlation coefficients. Tissue heterogeneity complexity metrics were calculated based on the gradient of the Hounsfield units. RESULTS: The median and interquartile range for the TOPAS GPRs (3%/3 mm criteria) were 97.24% and 3.75%, respectively, and were 99.54% and 0.36% for the AQA tool, respectively. The computational time for TOPAS ranged from 4 to 8 h to achieve a statistical uncertainty of <1.5%, whereas the AQA tool had an average calculation time of a few minutes. Of the 23 calculated IMRT plan complexity metrics, the AQA GPRs had correlations with 7 out of 23 of the calculated metrics. Strong correlations (|r| > 0.7) were found between the GPRs and the heterogeneity complexity metrics introduced in this work. CONCLUSIONS: An independent MC and log file-based IMRT QA tool was successfully developed and can be clinically deployed for offline QA. The complexity metrics will supplement QA reports and provide information regarding plan complexity.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Dosagem Radioterapêutica , Aceleradores de Partículas , Imageamento por Ressonância Magnética
10.
J Appl Clin Med Phys ; 23(11): e13639, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35570395

RESUMO

We demonstrate a virtual pretreatment patient-specific QA (PSQA) procedure that is capable of quantifying dosimetric effect on patient anatomy for both intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). A machine learning prediction model was developed to use linear accelerator parameters derived from the DICOM-RT plan to predict delivery discrepancies at treatment delivery (defined as the difference between trajectory log file and DICOM-RT) and was coupled with an independent Monte Carlo dose calculation algorithm for dosimetric analysis. Machine learning models for IMRT and VMAT were trained and validated using 120 IMRT and 206 VMAT fields of prior patients, with 80% assigned for iterative training and testing, and 20% for post-training validation. Various prediction models were trained and validated, with the final models selected for clinical implementation being a boosted tree and bagged tree for IMRT and VMAT, respectively. After validation, these models were then applied clinically to predict the machine parameters at treatment delivery for 7 IMRT plans from various sites (61 fields) and 10 VMAT multi-target intracranial radiosurgery plans (35 arcs) and compared to the dosimetric effect calculated directly from trajectory log files. Dose indices tracked for targets and organs at risk included dose received by 99%, 95%, and 1% of the volume, mean dose, percent of volume receiving 25%-100% of the prescription dose. The average coefficient of determination (r2 ) when comparing intra-field predicted and actual delivery error was 0.987 ± 0.012 for IMRT and 0.895 ± 0.095 for VMAT, whereas r2 when comparing inter-field predicted versus actual delivery error was 0.982 for IMRT and 0.989 for VMAT. Regarding dosimetric analysis, r2 when comparing predicted versus actual dosimetric changes for all dose indices was 0.966 for IMRT and 0.907 for VMAT. Prediction models can be used to anticipate the dosimetric effect calculated from trajectory files and have potential as a "delivery-free" pretreatment analysis to enhance PSQA.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco , Radiometria
11.
Phys Med Biol ; 67(5)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35134790

RESUMO

The purpose of the present work is to evaluate the feasibility of a novel real-time beam monitoring device for medical linacs which remotely senses charge carriers produced in air by the beam without intersecting and attenuating the beamline. The primary goal is to elaborate a theoretical concept of a possible detector geometry and underlying physical model that allows for determination of clinically relevant beam data in real time, namely MLC leaf positions and dose rate. The detector consists of two opposing electrode arrays arranged in two possible orientations around the beamline. Detection of charge carriers is governed by electromagnetic principles described by Shockley-Ramo theorem. Ions produced by ionization of the air column upstream of patient move laterally in an external electric field. According to the method of images, mirror charges and mirror currents are formed in the strip electrodes. Determination of MU rate and MLC positions using the measured signal requires solution of an inverse problem. In the present work we adopted a Least-Square approach and characterized detector response and sensitivity to detection of beam properties for different electrode geometries and MLC shapes. Results were dependent on MLC field shape and the leaf position within the active volume. The accuracy of determination of leaf positions were in the sub-mm range (up to 0.25-1 mm). Additionally, detector sensitivity was quantified by simulating ions/pulse delivered with a radiation transport deterministic computation in 1D in CEPXS/ONEDANT. For a 6 MV linac pulse, signal amplitude per pulse was estimated to be in the lower pA to fA range. We computationally demonstrated feasibility of the remote sensing detector capable of measuring beam parameters such as MLC leaf positions and dose range for each pulse. Future work should focus on optimizing the electrode geometry to increase sensitivity and better reconstruction algorithms to provide more accurate solutions of the inverse problem.


Assuntos
Tecnologia de Sensoriamento Remoto , Síncrotrons , Algoritmos , Eletricidade , Frequência Cardíaca , Humanos
12.
Cancer Radiother ; 26(3): 427-432, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34090790

RESUMO

PURPOSE: To use statistical process control for intensity-modulated radiation therapy (IMRT) quality assurance (QA) and improve tolerance limits and action limits. METHODS: An electronic portal imaging device (EPID) was selected to verify IMRT QA. The I-chart and the exponentially weighted moving averages (EWMA) chart were used to analyze the corresponding results. RESULTS: Twenty samples were used to enable the sampling requirements for building the control limits to be met. The I-chart showed that isolated data points beyond the control limits were mainly derived from complex plans. The EWMA made predictions of systematic errors earlier than the I-chart. Systematic errors primarily originated from the dose calibration on the EPID, and recalibrating the EPID could eliminate such errors. CONCLUSION: Statistical process control is an effective tool to detect controllable and can be used in IMRT QA. After calibrating the EPID, the tolerance and action limits all improved and satisfied the requirements/recommended values of the AAPM TG-218 report.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Cuidados Paliativos , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
13.
Radiat Oncol ; 16(1): 226, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809645

RESUMO

PURPOSE: This study presents patient-specific quality assurance (QA) results from the first 395 clinical cases for the new helical TomoTherapy® platform (Radixact) coupled with dedicated Precision TPS. METHODS: The passing rate of the Gamma Index (GP%) of 395 helical QA of patient-specific tomotherapy, acquired with ArcCHECK, is presented, analysed and correlated to various parameters of the plan. Following TG-218 recommendations, the clinic specific action limit (ALcs) and tolerance limit (TLcs) were calculated for our clinic and monitored during the analysed period. RESULTS: The mean values ​​(± 1 standard deviation) of GP% (3%/2 mm) (both global and local normalization) are: 97.6% and 90.9%, respectively. The proposed ALcs and TLcs, after a period of two years' process monitoring are 89.4% and 91.1% respectively. CONCLUSIONS: The phantom measurements closely match the planned dose distributions, demonstrating that the calculation accuracy of the new Precision TPS and the delivery accuracy of the Radixact unit are adequate, with respect to international guidelines and reports. Furthermore, a first correlation with the planning parameters was made. Action and tolerance limits have been set for the new Radixact Linac.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Raios gama , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
14.
J Appl Clin Med Phys ; 22(10): 104-119, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34449110

RESUMO

PURPOSE: The aim of this paper is to describe the tests carried out on a SRSMapCheck array, to verify its reliability and sensitivity for quality assurance (QA) of high gradient treatments as an alternative system to the use of high spatial resolution detectors, such as gafchromic film, whose processing requires meticulous and time-consuming procedures. METHODS: In an initial step, general functionality tests were carried out to verify that the equipment meets the manufacturer's specifications. A study of the accuracy of the application of correction factors to compensate for variation in detector response due to dose rate, field size and beam angle incidence has been included. Besides, to assess the ability of the array to detect inaccurately delivered treatments, systematic errors corresponding to the deviation in the position of the leaves and the accuracy of the gantry position, have been introduced. Based on these results, an estimate of sensitivity and specificity values of the device has been completed. The final step included a study applied to high gradient treatment for real cases of spatially fractionated radiotherapy, where the results of SRSMapCheck measurements have been compared with gafchromic films. RESULTS: General commissioning tests meet the manufacturer's specifications. dose rate (DR) response variation is better than 1.5% and for DR above 50 MU/min better than 1%. The results for beam incidences are better than 1% for all gantry angles, including beam incidences parallel to the array. Field size response differences are within the range of ±1% for sizes up to 2 × 2 cm2 , with a maximum value obtained of 3.5%, for 1 × 1 cm2 . From the systematic error study, using a Gamma function Γ (2%, 2 mm), the detector presents a high specificity with a value greater than 90% at its lower limit, while its sensitivity has a moderate mean value of 81%. Sensitivity values increase above 86% when we apply a Gamma function Γ (2%, 1 mm) is applied. Finally, the study of actual cases comprises 17 patients, distributed into 11 lung tumors, 3 gynecological and 3 soft tissue tumors. The gafchromic film showed a lower passing rate with an average value of Γ (2%, 2 mm) = 94.1% compared to Γ (2%, 2 mm) = 98.6% reached by the measurements with the array. CONCLUSIONS: Gamma function obtained with the SRSMapCheck array always presented a higher value than gafchromic film measurements, resulting in a greater number of plans considered correct. This fact, together with the sensitivity and specificity study carried out, allows us to conclude the recommendation that a restrictive metric must be established, in this way we will improve sensitivity, and therefore we will reduce the rate of incorrect plans qualified as correct. The characteristics of the equipment together with the correction factors applied, led to reliably performing acquisitions for complex treatments with multiple small targets in oblique rotational incidences. The spatial resolution of detectors allows the verification of high gradient dose plans such as those achieved in spatially fractionated radiotherapy (SFRT).


Assuntos
Garantia da Qualidade dos Cuidados de Saúde , Radioterapia de Intensidade Modulada , Fracionamento da Dose de Radiação , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Radiat Oncol ; 16(1): 134, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289863

RESUMO

BACKGROUND: Both patient-specific dose recalculation and γ passing rate analysis are important for the quality assurance (QA) of intensity modulated radiotherapy (IMRT) plans. The aim of this study was to analyse the correlation between the γ passing rates and the volumes of air cavities (Vair) and bony structures (Vbone) in target volume of head and neck cancer. METHODS: Twenty nasopharyngeal carcinoma and twenty nasal natural killer T-cell lymphoma patients were enrolled in this study. Nine-field sliding window IMRT plans were produced and the dose distributions were calculated by anisotropic analytical algorithm (AAA), Acuros XB algorithm (AXB) and SciMoCa based on the Monte Carlo (MC) technique. The dose distributions and γ passing rates of the targets, organs at risk, air cavities and bony structures were compared among the different algorithms. RESULTS: The γ values obtained with AAA and AXB were 95.6 ± 1.9% and 96.2 ± 1.7%, respectively, with 3%/2 mm criteria (p > 0.05). There were significant differences (p < 0.05) in the γ values between AAA and AXB in the air cavities (86.6 ± 9.4% vs. 98.0 ± 1.7%) and bony structures (82.7 ± 13.5% vs. 99.0 ± 1.7%). Using AAA, the γ values were proportional to the natural logarithm of Vair (R2 = 0.674) and inversely proportional to the natural logarithm of Vbone (R2 = 0.816). When the Vair in the targets was smaller than approximately 80 cc or the Vbone in the targets was larger than approximately 6 cc, the γ values of AAA were below 95%. Using AXB, no significant relationship was found between the γ values and Vair or Vbone. CONCLUSION: In clinical head and neck IMRT QA, greater attention should be paid to the effect of Vair and Vbone in the targets on the γ passing rates when using different dose calculation algorithms.


Assuntos
Osso e Ossos/patologia , Neoplasias de Cabeça e Pescoço/patologia , Linfoma Extranodal de Células T-NK/patologia , Carcinoma Nasofaríngeo/patologia , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Osso e Ossos/efeitos da radiação , Raios gama , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Linfoma Extranodal de Células T-NK/radioterapia , Método de Monte Carlo , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/radioterapia , Prognóstico , Dosagem Radioterapêutica
16.
Cureus ; 13(5): e14910, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34113520

RESUMO

Purpose To determine the appropriateness of implementing Mobius3D/FX (Varian Medical Systems, Inc., Palo Alto, CA, USA) as not only a pretreatment secondary check but as an alternative to measurement-based patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods Mobius3D/FX was commissioned and stock beam models were tweaked so that an independent recalculated 3D dose distribution can be obtained. Then, 50 patient-specific treatment plans for various indications were delivered across a 2D ion chamber array, radiochromic film setup, and electronic portal imager and analyzed with MobiusFX and gamma analysis. The concordance of plans scored as passing between MobiusFX and the conventional methods of QA was determined. Results All analyzed treatment plans passed with a gamma passing rate >90% across all conventional QA methods, most commonly using a 3%/3mm gamma criterion except for film measurements where a 5%/3mm criterion was applied. There was good agreement and concordance between MobiusFX and conventional methods when using a 3%/3mm criteria for MobiusFX, whereas a 2%/2mm criteria appeared too stringent as it failed treatment plans deemed clinically acceptable using conventional methods. Conclusions Using a 50-sample subset of clinically delivered treatment plans this non-inferiority-type comparison shows Mobius3D/FX based on log file analysis to be a suitable alternative to conventional QA methods when utilizing the 3%/3mm gamma criterion. Methods based on log file analysis can provide an opportunity for resource sparing, improving the efficiency, and workflow for evaluating IMRT treatment plans.

17.
Med Phys ; 48(9): 5367-5381, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34036596

RESUMO

PURPOSE: To separately quantify sensitivity differences in patient-specific quality assurance comparisons analyzed with the gamma comparison for different measurement geometries, spatial samplings, and delivery techniques [intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)]. METHODS: Error-free calculations for 20 IMRT and 20 VMAT cases were compared to calculations with known induced errors of varying magnitudes, using gamma comparisons. Five error types (MU scaling, three different MLC errors, and collimator errors) were induced in plan calculations on three different detector geometries - ArcCHECK, MapCHECK, and Delta 4. To study detector geometry sensitivity effects alone, gamma comparisons were made with 1 mm error-free calculations compared to 1 mm error-induced calculations for each device. Effects of spatial sampling were studied by making the same gamma comparisons, but down-sampling the error-induced calculations to the real spatial sampling of each device. Additionally, 1 mm vs 1 mm comparisons between the IMRT and VMAT cases were compared to investigate sensitivity differences between IMRT and VMAT using IMRT and VMAT cohorts with similar ranges of plan complexity and average aperture size. For each case, induced error type, and device, five different gamma criteria were studied to ensure sensitivity differences between devices, spatial sampling scenarios, and delivery technique were not gamma criterion specific, resulting in over 36,000 gamma comparisons. RESULTS: For IMRT cases, Delta4 and MapCHECK devices had similar error sensitivities for lagging leaf, bank shift, and MU errors, while the ArcCHECK had considerably lower sensitivity than the planar-type devices. For collimator errors and perturbational leaf errors the ArcCHECK had higher error sensitivity than planar-type devices. This behavior was independent of gamma parameters (percent dose difference, distance-to-agreement, and low dose threshold), though use of local normalization resulted in error sensitivites that were markedly similar between all three devices. Differences between detector geometries were less pronounced for VMAT deliveries. Error sensitivity for a given gamma criterion when comparing IMRT and VMAT deliveries on the same devices showed that VMAT plans were more sensitive to some specific error types and less sensitive to others, when compared to IMRT plans. For the ArcCHECK device, the sensitivity of IMRT and VMAT cases was quite similar, whereas this was not the case for the planar-type devices. When comparing error sensitivity between 1 mm vs 1 mm calculations and 1 mm vs the real spatial sampling for each device, results showed that increased spatial sampling did not systematically increase error sensitivity. CONCLUSIONS: Noticeable differences in error sensitivity were observed for different detector geometries, but differences were dependent on induced error type, and a particular device geometry did not offer universal improvements in error sensitivity across studied error types. This study demonstrates that the sensitivity of the gamma comparison does not largely hinge on detector spatial sampling. VMAT deliveries were generally less sensitive to errors when compared to IMRT plans for the planar-type devices, while similar sensitivities were observed between delivery techniques for the ArcCHECK device. Results of this work suggest that a universal gamma criterion is inappropriate for IMRT QA and that the percent pixels passing is an insufficient metric for evaluating quality assurance checks in the clinic.


Assuntos
Radioterapia de Intensidade Modulada , Raios gama , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador
18.
J Appl Clin Med Phys ; 22(5): 24-35, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792180

RESUMO

PURPOSE: Two-dimensional (2D) IMRT QA has been widely performed in Radiation Oncology clinic. However, concerns regarding its sensitivity in detecting delivery errors and its clinical meaning have been raised in publications. In this study, a robust methodology of three-dimensional (3D) IMRT QA using fiducial registration and structure-mapping was proposed to acquire organ-specific dose information. METHODS: Computed tomography (CT) markers were placed on the PRESAGE dosimeter as fiducials before CT simulation. Subsequently, the images were transferred to the treatment planning system to create a verification plan for the examined treatment plan. Patient's CT images were registered to the CT images of the dosimeter for structure mapping according to the positions of the fiducials. After irradiation, the 3D dose distribution was read-out by an optical-CT (OCT) scanner with fiducials shown on the OCT dose images. An automatic localization algorithm was developed in MATLAB to register the markers in the OCT images to those in the CT images of the dosimeter. SlicerRT was used to show and analyze the results. Fiducial registration error was acquired by measuring the discrepancies in 20 fiducial registrations, and thus the fiducial localization error and target registration error (TRE) was estimated. RESULTS: Dosimetry comparison between the calculated and measured dose distribution in various forms were presented, including 2D isodose lines comparison, 3D isodose surfaces with patient's anatomical structures, 2D and 3D gamma index, dose volume histogram and 3D view of gamma failing points. From the analysis of 20 fiducial registrations, fiducial registration error was measured to be 0.62 mm and fiducial localization error was calculated to be 0.44 mm. Target registration uncertainty of the proposed methodology was estimated to be within 0.3 mm in the area of dose measurement. CONCLUSIONS: This study proposed a robust methodology of 3D measurement-based IMRT QA for organ-specific dose comparison and demonstrated its clinical feasibility.


Assuntos
Radioterapia de Intensidade Modulada , Algoritmos , Marcadores Fiduciais , Humanos , Radiometria , Tomografia Computadorizada por Raios X
19.
J Appl Clin Med Phys ; 22(4): 82-91, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33666360

RESUMO

PURPOSE: To validate an MR-compatible version of the ScandiDos Delta4 Phantom+ on a 0.35T MR guided linear accelerator (MR-Linac) system and to determine the effect of plan complexity on the measurement results. METHODS/MATERIALS: 36 clinical treatment plans originally delivered on a 0.35T MR linac system were re-planned on the Delta4 Phantom+ MR geometry following our clinical quality assurance (QA) protocol. The QA plans were then measured using the Delta4 Phantom+ MR and the global gamma pass rates were compared to previous results measured using a Sun Nuclear ArcCHECK-MR. Both 3%/3mm and 2%/2mm global gamma pass rates with a 20% dose threshold were recorded and compared. Plan complexity was quantified for each clinical plan investigated using 24 different plan metrics and each metric's correlation with the overall 2%/2mm global gamma pass rate was investigated using Pearson correlation coefficients. RESULTS: Both systems demonstrated comparable levels of gamma pass rates at both the 3%/3mm and 2%/2mm level for all plan complexity metrics. Nine plan metrics including area, number of active MLCs, perimeter, edge metric, leaf segment variability, complete irradiation area outline, irregularity, leaf travel index, and unique opening index were moderately (|r| > 0.5) correlated with the Delta4 2%/2mm global gamma pass rates whereas those same metrics had weak correlation with the ArcCHECK-MR pass rates. Only the perimeter to area ratio and small aperture score (20 mm) metrics showed moderate correlation with the ArcCHECK-MR gamma pass rates. CONCLUSIONS: The MR-compatible version of the ScandiDos Delta4 Phantom+ MR has been validated for clinical use on a 0.35T MR-Linac with results being comparable to an ArcCHECK-MR system in use clinically for almost five years. Most plan complexity metrics did not correlate with lower 2%/2mm gamma pass rates using the ArcCHECK-MR but several metrics were found to be moderately correlated with lower 2%/2mm global gamma pass rates for the Delta4 Phantom+ MR.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
20.
Med Phys ; 48(1): 80-93, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33128263

RESUMO

PURPOSE: The implementation of radiomics and machine learning (ML) techniques on analyzing two-dimensional gamma maps has been demonstrated superior to the conventional gamma analysis for error identification in intensity modulated radiotherapy (IMRT) quality assurance (QA). Recently, the Structural SIMilarity (SSIM) sub-index maps were shown to be able to reveal the error types of the dose distributions. In this study, we aimed to apply radiomics analysis on SSIM sub-index maps and develop ML models to classify delivery errors in patient-specific dynamic IMRT QA. METHODS: Twenty-one sliding-window IMRT plans of 180 beams for three treatment sites were involved in this study. Four types of machine-related errors of various magnitudes were simulated for each beam at each control point, including the monitor unit (MU) variations, same-directional and opposite-directional shifts of the multileaf collimators (MLCs) and random mispositioning of the MLCs. In the QA process, a total of 1620 portal dose (PD) images were acquired for the beams with and without errors. The predicted PD images of the original beams were set as references. To quantify the agreement between a measured PD image and the corresponding predicted PD image, four difference maps including three SSIM sub-index maps, and one dose difference-derived map were calculated. Then, radiomic features were extracted from the four difference maps of each measured PD image. We tested four typical classifiers including linear discriminant classifier (LDC), two supporting vector machine (SVM) classifiers, and random forest (RF) for this multiclass classification task. A nested cross-validation scheme was used for model evaluations, where the SVM recursive feature elimination method was applied for feature selection. Finally, the performance of the ML model on identifying the error-free and the erroneous cases was compared to that of the conventional gamma analysis. RESULTS: The statistics of the selected features showed that all of the difference maps and the feature categories made balanced contributions to solve this classification task. Best performance was achieved by the Linear-SVM model with average overall classification accuracy of 0.86. Specifically, the average classification accuracies of the shift, opening, and the random errors were around 0.9. Moreover, ~80% of error-free and MU errors were correctly classified. Using gamma analysis, the 3 mm/3% criterion was found insensitive to errors (sensitivity was only 0.33). Although the sensitivity to errors with the 2 mm/2% criterion increased to 0.79, still 8% worse than that of the ML model. CONCLUSIONS: We proposed an ML-based method for machine-related error identification in patient-specific dynamic IMRT QA, where radiomic analysis on SSIM sub-index maps were used for feature extraction. With extensive validation to select the best features and classifiers, high accuracies in error classification were achieved. Compared with the conventional gamma threshold method, this approach has great potential in error identification for the patient-specific IMRT QA process.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde , Radioterapia de Intensidade Modulada , Raios gama , Humanos , Aprendizado de Máquina , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA