Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Environ Sci Technol ; 58(32): 14348-14360, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39092553

RESUMO

High resolution exposure surfaces are essential to capture disparities in exposure to traffic-related air pollution in urban areas. In this study, we develop an approach to downscale Chemical Transport Model (CTM) simulations to a hyperlocal level (∼100m) in the Greater Toronto Area (GTA) under three scenarios where emissions from cars, trucks and buses are zeroed out, thus capturing the burden of each transportation mode. This proposed approach statistically fuses CTMs with Land-Use Regression using machine learning techniques. With this proposed downscaling approach, changes in air pollutant concentrations under different scenarios are appropriately captured by downscaling factors that are trained to reflect the spatial distribution of emission reductions. Our validation analysis shows that high-resolution models resulted in better performance than coarse models when compared with observations at reference stations. We used this downscaling approach to assess disparities in exposure to nitrogen dioxide (NO2) for populations composed of renters, low-income households, recent immigrants, and visible minorities. Individuals in all four categories were disproportionately exposed to the burden of cars, trucks, and buses. We conducted this analysis at spatial resolutions of 12, 4, 1 km, and 100 m and observed that disparities were significantly underestimated when using coarse spatial resolutions. This reinforces the need for high-spatial resolution exposure surfaces for environmental justice analyses.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Emissões de Veículos , Humanos , Exposição Ambiental , Modelos Químicos , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise
2.
Sci Total Environ ; : 175632, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168320

RESUMO

Air pollution has been recognized as a global issue, through adverse effects on environment and health. While vertical atmospheric processes substantially affect urban air pollution, traditional epidemiological research using Land-Use Regression (LUR) modeling usually focused on ground-level attributes without considering upper-level atmospheric conditions. This study aimed to integrate Doppler LiDAR and machine learning techniques into LUR models (LURF-LiDAR) to comprehensively evaluate urban air pollution in Hong Kong, and to assess the complex interactions between vertical atmospheric processes and urban air pollution from long-term (i.e., annual) and short-term (i.e., two air pollution episodes) views in 2021. The results demonstrated significant improvements in model performance, achieving a CV R2 of 0.81 (95 % CI: 0.75-0.86) for the long-term PM2.5 prediction and 0.90 (95 % CI: 0.87-0.91) for a short-term one. Approximately 69 % of ground-level air pollution arose from the mixing of ground- and lower-level (105 m-225 m) particles, while 21 % was associated with upper-level (825 m-945 m) atmospheric processes. The identified transboundary air pollution (TAP) layer was located at ~900 m above the ground. The identified Episode one (E1: 7 Jan-22 Jan) was induced by the accumulation of local emissions under stable atmospheric conditions, whereas Episode two (E2: 13 Dec-24 Dec) was regulated by TAP under instable and turbulent conditions. Our improved air quality model is accurate and comprehensive with high interpretability for supporting urban planning and air quality policies.

3.
Environ Geochem Health ; 46(9): 313, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001902

RESUMO

The presence of pollutants in the earth's atmosphere has a direct impact on human health and the environment. So that pollutants such as carbon monoxide (CO) and particulate matter (PM) cause respiratory diseases, cough headache, etc. Since the amount of pollutants in the air is related to environmental and urban factors, the aim of the current research is to investigate the relationship between the concentration of CO, PM2.5 and PM10 with urban-environmental factors including land use, wind speed and wind direction, topography, traffic, road network, and population through a Land use regression (LUR) model. The concentrations of CO, PM2.5 and PM10 were measured during four seasons from 26th of March 2022 to 16th of March 2023 at 25 monitoring stations and then the information about pollutant measurement points and Land use data were entered into the ArcGIS software. The annual average concentrations of CO, PM2.5 and PM10 were 0.7 ppm, 18.94 and 60.76 µg/m3, respectively, in which the values of annual average concentration of CO and PMs were outside the air quality guideline standard. The results of the health risk assessment showed that the hazard quotient values for all three investigated pollutants were lower than 1 and therefore, they were not in adverse conditions in terms of health effects. Among the urban-environmental factors affecting air pollution, the traffic variable is the most important factor affecting the annual LUR model of CO, PM2.5 and PM10, and then the topography variable is the second most effective factor on the annual LUR model of the aforementioned pollutants.


Assuntos
Poluentes Atmosféricos , Monóxido de Carbono , Monitoramento Ambiental , Material Particulado , Poluentes Atmosféricos/análise , Medição de Risco , Material Particulado/análise , Humanos , Monóxido de Carbono/análise , Monitoramento Ambiental/métodos , Análise de Regressão , Poluição do Ar/análise , Cidades , Exposição Ambiental , Modelos Teóricos
4.
Environ Sci Technol ; 58(32): 14372-14383, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39082120

RESUMO

Addressing the challenge of mapping hyperlocal air pollution in areas without local monitoring, we evaluated unsupervised transfer learning-based land-use regression (LUR) models developed using mobile monitoring data from other cities: CORrelation ALignment (Coral) and its inverse distance-weighted modification (IDW_Coral). These models mitigated domain shifts and transferred patterns learned from mobile air quality monitoring campaigns in Copenhagen and Rotterdam to estimate annual average air pollution levels in Amsterdam (50m road segments) without involving any Amsterdam measurements in model development. For nitrogen dioxide (NO2), IDW_Coral outperformed Copenhagen and Rotterdam LUR models directly applied to Amsterdam, achieving MAE (4.47 µg/m3) and RMSE (5.36 µg/m3) comparable to a locally fitted LUR model (AMS_SLR) developed using Amsterdam mobile measurements collected for 160 days. IDW_Coral yielded an R2 of 0.35, similar to that of the AMS_SLR based on 20 collection days, suggesting a minimum requirement of 20-day mobile monitoring to capture city-specific insights. For ultrafine particles (UFP), IDW_Coral's citywide predictions strongly correlated with previously published mixed-effect models fitted with 160-day Amsterdam measurements (Pearson correlation of 0.71 for UFP and 0.72 for NO2). IDW_Coral demands no direct measurements in the target area, showcasing its potential for large-scale applications and offering significant economic efficiencies in executing mobile monitoring campaigns.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Material Particulado , Dióxido de Nitrogênio/análise , Cidades
5.
Environ Int ; 189: 108810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38875815

RESUMO

Previous studies of air pollution and respiratory disease often relied on aggregated or lagged acute respiratory disease outcome measures, such as emergency department (ED) visits or hospitalizations, which may lack temporal and spatial resolution. This study investigated the association between daily air pollution exposure and respiratory symptoms among participants with asthma and chronic obstructive pulmonary disease (COPD), using a unique dataset passively collected by digital sensors monitoring inhaled medication use. The aggregated dataset comprised 456,779 short-acting beta-agonist (SABA) puffs across 3,386 people with asthma or COPD, between 2012 and 2019, across the state of California. Each rescue use was assigned space-time air pollution values of nitrogen dioxide (NO2), fine particulate matter with diameter ≤ 2.5 µm (PM2.5) and ozone (O3), derived from highly spatially resolved air pollution surfaces generated for the state of California. Statistical analyses were conducted using linear mixed models and random forest machine learning. Results indicate that daily air pollution exposure is positively associated with an increase in daily SABA use, for individual pollutants and simultaneous exposure to multiple pollutants. The advanced linear mixed model found that a 10-ppb increase in NO2, a 10 µg m-3 increase in PM2.5, and a 30-ppb increase in O3 were respectively associated with incidence rate ratios of SABA use of 1.025 (95 % CI: 1.013-1.038), 1.054 (95 % CI: 1.041-1.068), and 1.161 (95 % CI: 1.127-1.233), equivalent to a respective 2.5 %, 5.4 % and 16 % increase in SABA puffs over the mean. The random forest machine learning approach showed similar results. This study highlights the potential of digital health sensors to provide valuable insights into the daily health impacts of environmental exposures, offering a novel approach to epidemiological research that goes beyond residential address. Further investigation is warranted to explore potential causal relationships and to inform public health strategies for respiratory disease management.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Material Particulado , Humanos , Poluição do Ar/efeitos adversos , Poluição do Ar/estatística & dados numéricos , California/epidemiologia , Material Particulado/análise , Material Particulado/efeitos adversos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Estudos Longitudinais , Ozônio/análise , Ozônio/efeitos adversos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Asma/epidemiologia , Asma/induzido quimicamente , Masculino , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Feminino , Pessoa de Meia-Idade , Monitoramento Ambiental/métodos , Idoso , Adulto , Saúde Digital
6.
Environ Pollut ; 356: 124353, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866318

RESUMO

The development of high-resolution spatial and spatiotemporal models of air pollutants is essential for exposure science and epidemiological applications. While fixed-site sampling has conventionally provided input data for statistical predictive models, the evolving mobile monitoring method offers improved spatial resolution, ideal for measuring pollutants with high spatial variability such as ultrafine particles (UFP). The Quebec Air Pollution Exposure and Epidemiology (QAPEE) study measured and modelled the spatial and spatiotemporal distributions of understudied pollutants, such as UFPs, black carbon (BC), and brown carbon (BrC), along with fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in Quebec City, Canada. We conducted a combined fixed-site (NO2 and O3) and mobile monitoring (PM2.5, BC, BrC, and UFPs) campaign over 10-months. Mobile monitoring routes were monitored on a weekly basis between 8am-10am and designed using location/allocation modelling. Seasonal fixed-site sampling campaigns captured continuous 24-h measurements over two-week periods. Generalized Additive Models (GAMs), which combined data on pollution concentrations with spatial, temporal, and spatiotemporal predictor variables were used to model and predict concentration surfaces. Annual models for PM2.5, NO2, O3 as well as seven of the smallest size fractions in the UFP range, had high out of sample predictive accuracy (range r2: 0.54-0.86). Varying spatial patterns were observed across UFP size ranges measured as Particle Number Counts (PNC). The monthly spatiotemporal models for PM2.5 (r2 = 0.49), BC (r2 = 0.27), BrC (r2 = 0.29), and PNC (r2 = 0.49) had moderate or moderate-low out of sample predictive accuracy. We conducted a sensitivity analysis and found that the minimum number of 'n visits' (mobile monitoring sessions) required to model annually representative air pollution concentrations was between 24 and 32 visits dependent on the pollutant. This study provides a single source of exposure models for a comprehensive set of air pollutants in Quebec City, Canada. These exposure models will feed into epidemiological research on the health impacts of ambient UFPs and other pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Monitoramento Ambiental , Ozônio , Material Particulado , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Material Particulado/análise , Quebeque , Ozônio/análise , Análise Espaço-Temporal , Dióxido de Nitrogênio/análise
7.
Environ Res ; 256: 119233, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38802030

RESUMO

Annual average land-use regression (LUR) models have been widely used to assess spatial patterns of air pollution exposures. However, they fail to capture diurnal variability in air pollution and consequently might result in biased dynamic exposure assessments. In this study we aimed to model average hourly concentrations for two major pollutants, NO2 and PM2.5, for the Netherlands using the LUR algorithm. We modelled the spatial variation of average hourly concentrations for the years 2016-2019 combined, for two seasons, and for two weekday types. Two modelling approaches were used, supervised linear regression (SLR) and random forest (RF). The potential predictors included population, road, land use, satellite retrievals, and chemical transport model pollution estimates variables with different buffer sizes. We also temporally adjusted hourly concentrations from a 2019 annual model using the hourly monitoring data, to compare its performance with the hourly modelling approach. The results showed that hourly NO2 models performed overall well (5-fold cross validation R2 = 0.50-0.78), while the PM2.5 performed moderately (5-fold cross validation R2 = 0.24-0.62). Both for NO2 and PM2.5 the warm season models performed worse than the cold season ones, and the weekends' worse than weekdays'. The performance of the RF and SLR models was similar for both pollutants. For both SLR and RF, variables with larger buffer sizes representing variation in background concentrations, were selected more often in the weekend models compared to the weekdays, and in the warm season compared to the cold one. Temporal adjustment of annual average models performed overall worse than both modelling approaches (NO2 hourly R2 = 0.35-0.70; PM2.5 hourly R2 = 0.01-0.15). The difference in model performance and selection of variables across hours, seasons, and weekday types documents the benefit to develop independent hourly models when matching it to hourly time activity data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Dióxido de Nitrogênio , Material Particulado , Estações do Ano , Países Baixos , Material Particulado/análise , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Modelos Teóricos
8.
J Environ Manage ; 360: 121198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772239

RESUMO

Nitrogen dioxide (NO2) is a major air pollutant primarily emitted from traffic and industrial activities, posing health risks. However, current air pollution models often underestimate exposure risks by neglecting the bimodal pattern of NO2 levels throughout the day. This study aimed to address this gap by developing ensemble mixed spatial models (EMSM) using geo-artificial intelligence (Geo-AI) to examine the spatial and temporal variations of NO2 concentrations at a high resolution of 50m. These EMSMs integrated spatial modelling methods, including kriging, land use regression, machine learning, and ensemble learning. The models utilized 26 years of observed NO2 measurements, meteorological parameters, geospatial layers, and social and season-dependent variables as representative of emission sources. Separate models were developed for daytime and nighttime periods, which achieved high reliability with adjusted R2 values of 0.92 and 0.93, respectively. The study revealed that mean NO2 concentrations were significantly higher at nighttime (9.60 ppb) compared to daytime (5.61 ppb). Additionally, winter exhibited the highest NO2 levels regardless of time period. The developed EMSMs were utilized to generate maps illustrating NO2 levels pre and during COVID restrictions in Taiwan. These findings could aid epidemiological research on exposure risks and support policy-making and environmental planning initiatives.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Inteligência Artificial , Monitoramento Ambiental , Dióxido de Nitrogênio , Dióxido de Nitrogênio/análise , Taiwan , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Estações do Ano
9.
Sci Total Environ ; 926: 171873, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521275

RESUMO

Research on High Spatial-Resolved Source-Specific Exposure and Risk (HSRSSER) was conducted based on multiple-year, multiple-site synchronous measurement of PM2.5-bound (particulate matter with aerodynamic diameter<2.5 µm) toxic components in a Chinese megacity. The developed HSRSSER model combined the Positive Matrix Factorization (PMF) and Land Use Regression (LUR) to predict high spatial-resolved source contributions, and estimated the source-specific exposure and risk by personal activity time- and population-weighting. A total of 287 PM2.5 samples were collected at ten sites in 2018-2020, and toxic species including heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) were analyzed. The percentage non-cancer risk were in the order of traffic emission (48 %) > industrial emission (22 %) > coal combustion (12 %) > waste incineration (11 %) > resuspend dust (7 %) > OPE-related products (0 %) ≈ secondary particles (0 %). Similar orders were observed in cancer risk. For traffic emission, due to its higher source contributions and large population in central area, non-cancer and cancer risk fraction increased from 23 % to 48 % and 20 % to 46 % after exposure estimation; while for industrial emission, higher source contributions but small population in suburb area decreased the percentage non-cancer and cancer risk from 38 % to 22 % and 39 % to 24 %, respectively.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Monitoramento Ambiental , Material Particulado/análise , Cidades , Hidrocarbonetos Policíclicos Aromáticos/análise , China/epidemiologia
10.
Environ Pollut ; 348: 123773, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499172

RESUMO

Despite the growing unconventional natural gas production industry in northeastern British Columbia, Canada, few studies have explored the air quality implications on human health in nearby communities. Researchers who have worked with pregnant women in this area have found higher levels of volatile organic compounds (VOCs) in the indoor air of their homes associated with higher density and closer proximity to gas wells. To inform ongoing exposure assessments, this study develops land use regression (LUR) models to predict ambient air pollution at the homes of pregnant women by using natural gas production activities as predictor variables. Using the existing monitoring network, the models were developed for three temporal scales for 12 air pollutants. The models predicting monthly, bi-annual, and annual mean concentrations explained 23%-94%, 54%-94%, and 73%-91% of the variability in air pollutant concentrations, respectively. These models can be used to investigate associations between prenatal exposure to air pollutants associated with natural gas production and adverse health outcomes in northeastern British Columbia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Feminino , Humanos , Gravidez , Gás Natural , Monitoramento Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Colúmbia Britânica
11.
Environ Res Lett ; 19(3): 034036, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38419692

RESUMO

Road traffic has become the leading source of air pollution in fast-growing sub-Saharan African cities. Yet, there is a dearth of robust city-wide data for understanding space-time variations and inequalities in combustion related emissions and exposures. We combined nitrogen dioxide (NO2) and nitric oxide (NO) measurement data from 134 locations in the Greater Accra Metropolitan Area (GAMA), with geographical, meteorological, and population factors in spatio-temporal mixed effects models to predict NO2 and NO concentrations at fine spatial (50 m) and temporal (weekly) resolution over the entire GAMA. Model performance was evaluated with 10-fold cross-validation (CV), and predictions were summarized as annual and seasonal (dusty [Harmattan] and rainy [non-Harmattan]) mean concentrations. The predictions were used to examine population distributions of, and socioeconomic inequalities in, exposure at the census enumeration area (EA) level. The models explained 88% and 79% of the spatiotemporal variability in NO2 and NO concentrations, respectively. The mean predicted annual, non-Harmattan and Harmattan NO2 levels were 37 (range: 1-189), 28 (range: 1-170) and 50 (range: 1-195) µg m-3, respectively. Unlike NO2, NO concentrations were highest in the non-Harmattan season (41 [range: 31-521] µg m-3). Road traffic was the dominant factor for both pollutants, but NO2 had higher spatial heterogeneity than NO. For both pollutants, the levels were substantially higher in the city core, where the entire population (100%) was exposed to annual NO2 levels exceeding the World Health Organization (WHO) guideline of 10 µg m-3. Significant disparities in NO2 concentrations existed across socioeconomic gradients, with residents in the poorest communities exposed to levels about 15 µg m-3 higher compared with the wealthiest (p < 0.001). The results showed the important role of road traffic emissions in air pollution concentrations in the GAMA, which has major implications for the health of the city's poorest residents. These data could support climate and health impact assessments as well as policy evaluations in the city.

12.
Sci Total Environ ; 918: 170550, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38320693

RESUMO

Detailed spatial models of monthly air pollution levels at a very fine spatial resolution (25 m) can help facilitate studies to explore critical time-windows of exposure at intermediate term. Seasonal changes in air pollution may affect both levels and spatial patterns of air pollution across Europe. We built Europe-wide land-use regression (LUR) models to estimate monthly concentrations of regulated air pollutants (NO2, O3, PM10 and PM2.5) between 2000 and 2019. Monthly average concentrations were collected from routine monitoring stations. Including both monthly-fixed and -varying spatial variables, we used supervised linear regression (SLR) to select predictors and geographically weighted regression (GWR) to estimate spatially-varying regression coefficients for each month. Model performance was assessed with 5-fold cross-validation (CV). We also compared the performance of the monthly LUR models with monthly adjusted concentrations. Results revealed significant monthly variations in both estimates and model structure, particularly for O3, PM10, and PM2.5. The 5-fold CV showed generally good performance of the monthly GWR models across months and years (5-fold CV R2: 0.31-0.66 for NO2, 0.4-0.79 for O3, 0.4-0.78 for PM10, 0.46-0.87 for PM2.5). Monthly GWR models slightly outperformed monthly-adjusted models. Correlations between monthly GWR model were generally moderate to high (Pearson correlation >0.6). In conclusion, we are the first to develop robust monthly LUR models for air pollution in Europe. These monthly LUR models, at a 25 m spatial resolution, enhance epidemiologists to better characterize Europe-wide intermediate-term health effects related to air pollution, facilitating investigations into critical exposure time windows in birth cohort studies.

13.
Environ Int ; 183: 108430, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219544

RESUMO

Land use regression (LUR) models are widely used in epidemiological and environmental studies to estimate humans' exposure to air pollution within urban areas. However, the early models, developed using linear regressions and data from fixed monitoring stations and passive sampling, were primarily designed to model traditional and criteria air pollutants and had limitations in capturing high-resolution spatiotemporal variations of air pollution. Over the past decade, there has been a notable development of multi-source observations from low-cost monitors, mobile monitoring, and satellites, in conjunction with the integration of advanced statistical methods and spatially and temporally dynamic predictors, which have facilitated significant expansion and advancement of LUR approaches. This paper reviews and synthesizes the recent advances in LUR approaches from the perspectives of the changes in air quality data acquisition, novel predictor variables, advances in model-developing approaches, improvements in validation methods, model transferability, and modeling software as reported in 155 LUR studies published between 2011 and 2023. We demonstrate that these developments have enabled LUR models to be developed for larger study areas and encompass a wider range of criteria and unregulated air pollutants. LUR models in the conventional spatial structure have been complemented by more complex spatiotemporal structures. Compared with linear models, advanced statistical methods yield better predictions when handling data with complex relationships and interactions. Finally, this study explores new developments, identifies potential pathways for further breakthroughs in LUR methodologies, and proposes future research directions. In this context, LUR approaches have the potential to make a significant contribution to future efforts to model the patterns of long- and short-term exposure of urban populations to air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Modelos Lineares , Dióxido de Nitrogênio/análise
14.
J Environ Manage ; 351: 119725, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064987

RESUMO

Elevated levels of ground-level ozone (O3) can have harmful effects on health. While previous studies have focused mainly on daily averages and daytime patterns, it's crucial to consider the effects of air pollution during daily commutes, as this can significantly contribute to overall exposure. This study is also the first to employ an ensemble mixed spatial model (EMSM) that integrates multiple machine learning algorithms and predictor variables selected using Shapley Additive exExplanations (SHAP) values to predict spatial-temporal fluctuations in O3 concentrations across the entire island of Taiwan. We utilized geospatial-artificial intelligence (Geo-AI), incorporating kriging, land use regression (LUR), machine learning (random forest (RF), categorical boosting (CatBoost), gradient boosting (GBM), extreme gradient boosting (XGBoost), and light gradient boosting (LightGBM)), and ensemble learning techniques to develop ensemble mixed spatial models (EMSMs) for morning and evening commute periods. The EMSMs were used to estimate long-term spatiotemporal variations of O3 levels, accounting for in-situ measurements, meteorological factors, geospatial predictors, and social and seasonal influences over a 26-year period. Compared to conventional LUR-based approaches, the EMSMs improved performance by 58% for both commute periods, with high explanatory power and an adjusted R2 of 0.91. Internal and external validation procedures and verification of O3 concentrations at the upper percentile ranges (in 1%, 5%, 10%, 15%, 20%, and 25%) and other conditions (including rain, no rain, weekday, weekend, festival, and no festival) have demonstrated that the models are stable and free from overfitting issues. Estimation maps were generated to examine changes in O3 levels before and during the implementation of COVID-19 restrictions. These findings provide accurate variations of O3 levels in commute period with high spatiotemporal resolution of daily and 50m * 50m grid, which can support control pollution efforts and aid in epidemiological studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Inteligência Artificial , Monitoramento Ambiental/métodos , Taiwan , Poluição do Ar/análise , Material Particulado/análise
15.
Environ Sci Pollut Res Int ; 31(2): 3207-3221, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38087152

RESUMO

Rapidly urbanizing cities in Latin America experience high levels of air pollution which are known risk factors for population health. However, the estimates of long-term exposure to air pollution are scarce in the region. We developed intraurban land use regression (LUR) models to map long-term exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) in the five largest cities in Colombia. We conducted air pollution measurement campaigns using gravimetric PM2.5 and passive NO2 sensors for 2 weeks during both the dry and rainy seasons in 2021 in the cities of Barranquilla, Bucaramanga, Bogotá, Cali, and Medellín, and combined these data with geospatial and meteorological variables. Annual models were developed using multivariable spatial regression models. The city annual PM2.5 mean concentrations measured ranged between 12.32 and 15.99 µg/m3 while NO2 concentrations ranged between 24.92 and 49.15 µg/m3. The PM2.5 annual models explained 82% of the variance (R2) in Medellín, 77% in Bucaramanga, 73% in Barranquilla, 70% in Cali, and 44% in Bogotá. The NO2 models explained 65% of the variance in Bucaramanga, 57% in Medellín, 44% in Cali, 40% in Bogotá, and 30% in Barranquilla. Most of the predictor variables included in the models were a combination of specific land use characteristics and roadway variables. Cross-validation suggests that PM2.5 outperformed NO2 models. The developed models can be used as exposure estimate in epidemiological studies, as input in hybrid models to improve personal exposure assessment, and for policy evaluation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Cidades , Dióxido de Nitrogênio/análise , Colômbia , Monitoramento Ambiental , Poluição do Ar/análise , Material Particulado/análise , Exposição Ambiental
16.
Environ Sci Technol ; 57(48): 19532-19544, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934506

RESUMO

In the United States (U.S.), studies on nitrogen dioxide (NO2) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO2 measurements and estimates of NO2 estimates from land-use regression and photochemical models, can aid in assessing NO2 exposure gradients, leveraging their complete spatial coverage. Using these data sets, we find that Black, Hispanic, Asian, and multiracial populations experience NO2 levels 15-50% higher than the national average in 2019, whereas the non-Hispanic White population is consistently exposed to levels that are 5-15% lower than the national average. By contrast, the in situ monitoring network indicates more moderate ethnoracial NO2 disparities and different rankings of the least- to most-exposed ethnoracial population subgroup. Validating these spatially complete data sets against in situ observations reveals similar performance, indicating that all these data sets can be used to understand spatial variations in NO2. Integrating in situ monitoring, satellite data, statistical models, and photochemical models can provide a semiobservational record, complete geospatial coverage, and increasingly high spatial resolution, enhancing future efforts to characterize, map, and track exposure and inequality for highly spatially heterogeneous pollutants like NO2.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estados Unidos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Nitrogênio/análise , Monitoramento Ambiental , Exposição Ambiental , Material Particulado/análise
17.
Environ Sci Technol ; 57(48): 19473-19486, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976408

RESUMO

Biomass burning is common in much of the world, and in some areas, residential wood-burning has increased. However, air pollution resulting from biomass burning is an important public health problem. A sampling campaign was carried out between May 2017 and July 2018 in over 64 sites in four sessions, to develop a spatio-temporal land use regression (LUR) model for fine particulate matter (PM) and wood-burning tracers levoglucosan and soluble potassium (Ksol) in a city heavily impacted by wood-burning. The mean (sd) was 46.5 (37.4) µg m-3 for PM2.5, 0.607 (0.538) µg m-3 for levoglucosan, and 0.635 (0.489) µg m-3 for Ksol. LUR models for PM2.5, levoglucosan, and Ksol had a satisfactory performance (LOSOCV R2), explaining 88.8%, 87.4%, and 87.3% of the total variance, respectively. All models included sociodemographic predictors consistent with the pattern of use of wood-burning in homes. The models were applied to predict concentrations surfaces and to estimate exposures for an epidemiological study.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Madeira/química , Chile , Monitoramento Ambiental/métodos
18.
Int J Biometeorol ; 67(11): 1839-1852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658998

RESUMO

Pollen production is one plant characteristic that is considered to be altered by changes in environmental conditions. In this study, we investigated pollen production of the three anemophilous species Betula pendula, Plantago lanceolata, and Dactylis glomerata along an urbanization gradient in Ingolstadt, Germany. We compared pollen production with the potential influencing factors urbanization, air temperature, and the air pollutants nitrogen dioxide (NO2) and ozone (O3). While we measured air temperature in the field, we computed concentration levels of NO2 and O3 from a land use regression model. The results showed that average pollen production (in million pollen grains) was 1.2 ± 1.0 per catkin of Betula pendula, 5.0 ± 2.4 per inflorescence of Plantago lanceolata, and 0.7 ± 0.5 per spikelet of Dactylis glomerata. Pollen production was higher in rural compared to urban locations on average for B. pendula (+ 73%) and P. lanceolata (+ 31%), while the opposite was the case for D. glomerata (- 14%). We found that there was substantial heterogeneity across the three species with respect to the association of pollen production and environmental influences. Pollen production decreased for all species with increasing temperature and urbanization, while for increasing pollutant concentrations, decreases were observed for B. pendula, P. lanceolata, and increases for D. glomerata. Additionally, pollen production was found to be highly variable across species and within species-even at small spatial distances. Experiments should be conducted to further explore plant responses to altering environmental conditions.

19.
Environ Int ; 178: 108106, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544265

RESUMO

BACKGROUND: Concentrations of outdoor ultrafine particles (UFP; <0.1 µm) and black carbon (BC) can vary greatly within cities and long-term exposures to these pollutants have been associated with a variety of adverse health outcomes. OBJECTIVE: This study integrated multiple approaches to develop new models to estimate within-city spatial variations in annual median (i.e. average) outdoor UFP and BC concentrations as well as mean UFP size in Canada's two largest cities, Montreal and Toronto. METHODS: We conducted year-long mobile monitoring campaigns in each city that included evenings and weekends. We developed generalized additive models trained on land use parameters and deep Convolutional Neural Network (CNN) models trained on satellite-view images. Using predictions from these models, we developed final combined models. RESULTS: In Toronto, the median observed UFP concentration, UFP size, and BC concentration values were 16,172pt/cm3, 33.7 nm, and 1225 ng/m3, respectively. In Montreal, the median observed UFP concentration, UFP size, and BC concentration values were 14,702pt/cm3, 29.7 nm, and 1060 ng/m3, respectively. For all pollutants in both cities, the proportion of spatial variation explained (i.e., R2) was slightly greater (1-2 percentage points) for the combined models than the generalized additive models and a greater (approximately 10 percentage points) than the deep CNN models. The Toronto combined model R2 values in the test set were 0.73, 0.55, and 0.61 for UFP concentrations, UFP size, and BC concentration, respectively. The Montreal combined model R2 values were 0.60, 0.49, and 0.60 for UFP concentration, UFP size, and BC concentration models respectively. For each pollutant, predictions from the combined, deep CNN, and generalized additive models were highly correlated with each other and differences between models were explored in sensitivity analyses. CONCLUSION: Predictions from these models are available to support future epidemiological research examining long-term health impacts of outdoor UFPs and BC.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aprendizado Profundo , Poluentes Ambientais , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Canadá , Poluentes Ambientais/análise , Fuligem/análise , Tamanho da Partícula , Poluição do Ar/análise
20.
Toxics ; 11(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37112543

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are an important class of pollutants in China. The land use regression (LUR) model has been used to predict the selected PAH concentrations and screen the key influencing factors. However, most previous studies have focused on particle-associated PAHs, and research on gaseous PAHs was limited. This study measured representative PAHs in both gaseous phases and particle-associated during the windy, non-heating and heating seasons from 25 sampling sites in different areas of Taiyuan City. We established separate prediction models of 15 PAHs. Acenaphthene (Ace), Fluorene (Flo), and benzo [g,h,i] perylene (BghiP) were selected to analyze the relationship between PAH concentration and influencing factors. The stability and accuracy of the LUR models were quantitatively evaluated using leave-one-out cross-validation. We found that Ace and Flo models show good performance in the gaseous phase (Ace: adj. R2 = 0.14-0.82; Flo: adj. R2 = 0.21-0.85), and the model performance of BghiP is better in the particle phase (adj. R2 = 0.20-0.42). Additionally, better model performance was observed in the heating season (adj R2 = 0.68-0.83) than in the non-heating (adj R2 = 0.23-0.76) and windy seasons (adj R2 = 0.37-0.59). Those gaseous PAHs were highly affected by traffic emissions, elevation, and latitude, whereas BghiP was affected by point sources. This study reveals the strong seasonal and phase dependence of PAH concentrations. Building separate LUR models in different phases and seasons improves the prediction accuracy of PAHs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA