RESUMO
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide-zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following processes: zinc-immobilized affinity chromatography (IMAC-Zn2+), liquid chromatography-mass spectrometry technology (LC-MS/MS) analysis, molecular docking, molecular dynamic simulation, and structural characterization. Then, the Zn-binding peptide (PEP) named Glu-His-Ala-Pro-Asn-His-Asp-Asn-Pro-Gly-Asp-Leu (EHAPNHDNPGDL) was identified. EHAPNHDNPGDL showed the highest zinc-chelating ability of 49.74 ± 1.44%, which was higher than that of the ethanol-soluble oyster peptides (27.50 ± 0.41%). In the EHAPNHDNPGDL-Zn complex, Asn-5, Asp-7, Asn-8, His-2, and Asp-11 played an important role in binding to the zinc ion. Additionally, EHAPNHDNPGDL-Zn was found to increase the cell viability, significantly increase the relative activity of antioxidant enzymes and testosterone content, and decrease malondialdehyde (MDA) content in MEHP-induced TM3 cells. The results also indicated that EHAPNHDNPGDL-Zn could alleviate MEHP-induced apoptosis by reducing the protein level of p53, p21, and Bax, and increasing the protein level of Bcl-2. These results indicate that the zinc-chelating peptides derived from oyster peptides could be used as a potential dietary zinc supplement.
Assuntos
Quelantes , Dietilexilftalato , Células Intersticiais do Testículo , Simulação de Acoplamento Molecular , Ostreidae , Peptídeos , Zinco , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Animais , Zinco/química , Masculino , Quelantes/farmacologia , Quelantes/química , Peptídeos/farmacologia , Peptídeos/química , Ostreidae/química , Camundongos , Dietilexilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Dietilexilftalato/farmacologia , Apoptose/efeitos dos fármacos , Etanol/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem CelularRESUMO
To increase elasticity and flexibility, di-2-ethylhexyl phthalate (DEHP) is used in a variety of industrial products, but excessive exposure to it can pose a threat to human health. In epidemiological studies of population exposure to DEHP, attention has been paid to damage to the male reproductive system. However, the toxicological mechanism of DEHP regarding testicular injury is not well understood. We used Western blot analysis, transmission electron microscopy, fluorescence staining, transient transfection and assay kit to detect relevant indicators, and the results were as follows: After DEHP exposure, the expression levels of ACSL4, COX2, TF, FTH1, LC3, AMPK, p-AMPK, ULK1, p-ULK1, serum iron, tissue iron and MDA in the exposure group were significantly increased. The expression levels of GPX4, NCOA4, p62, SIRT1, and PGC-1α, as well as the contents of GSH and ATP, decreased. Electron microscopy showed that more autophagosomes were observed. Our findings suggest that exposure to DEHP induced ferritinophagy and ferroptosis in the testis. In vitro, the promoting effect of ferritinophagy on ferroptosis was verified by applying the autophagy inhibitor (3-MA) and si-NCOA4. Moreover, Mono-(2-ethylhexyl) phthalate (MEHP) inhibited the mitochondrial regulatory protein SIRT1/PGC-1α, leading to mitochondrial dysfunction. Changes in mitochondrial reactive oxygen species (MtROS) and energy over-activated AMPK/ULK1 autophagy pathway, and then promoted ferritinophagy, which increased the sensitivity of TM4 cells to ferroptosis. This research offers a theoretical framework for the prevention and management of DEHP-induced harm.
RESUMO
Hypospadias is one of the most common congenital anomalies of the male urogenital system, and di(2-ethylhexyl) phthalate (DEHP), a widely used endocrine-disrupting chemical (EDC), is considered a significant risk factor for this condition. Mono-2-ethylhexyl phthalate (MEHP), the toxic active metabolite of DEHP, has been proven to affect penile development and ultimately result in the hypospadias phenotype. However, while it is acknowledged that hypospadias arises from the aberrant development of multiple penile tissues, the specific impact of MEHP on human foreskin tissue development and its underlying molecular mechanisms of action remain unclear. In this study, we constructed an in vitro toxicity assay for MEHP using human foreskin fibroblasts and employed high-throughput RNA sequencing to investigate the molecular mechanisms subserving the defects in cellular function. We subsequently conducted multi-omics data analysis using public databases to analyze key target genes, and identified MMP11 as a chief downstream gene responsible for the effects of MEHP on HFF-1 cell migration. Through molecular docking analysis and molecular biology experiments, we further demonstrated that the nuclear receptor PPAR-gamma was activated upon binding with MEHP, leading to the suppression of MMP11 expression. Additionally, we found that epigenetic modifications induced by MEHP were also involved in its pathogenic effects on hypospadias. Our research highlights the crucial role of impaired cellular proliferation and migration in MEHP-induced hypospadias. We identified the MEHP/PPAR-gamma/MMP11 pathway as a novel pathogenic mechanism, providing important potential targets for future preventive strategies with respect to hypospadias.
Assuntos
Dietilexilftalato , Fibroblastos , Prepúcio do Pênis , Hipospadia , Metaloproteinase 11 da Matriz , Humanos , Masculino , Movimento Celular/efeitos dos fármacos , Dietilexilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fibroblastos/efeitos dos fármacos , Prepúcio do Pênis/citologia , Prepúcio do Pênis/metabolismo , Hipospadia/induzido quimicamente , Hipospadia/patologia , Metaloproteinase 11 da Matriz/genética , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , PPAR gama/genéticaRESUMO
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most widely used plasticizers. Many studies focus on the impact of continuous exposure to DEHP on humans and ecosystems. In this study, the bibliometric analysis of DEHP and its metabolites research was conducted to assess the research performances, hotspot issues, and trends in this field. The data was retrieved from a Web of Science Core Collection online database. VOSviewer 1.6.18 was used to analyze. A total of 4672 publications were collected from 1975 to 2022 October 21. The number of publications and citations increased annually in the last decades. China had the largest number of publications, and the USA had the highest co-authorship score. The most productive and most frequently cited institutions were the Chinese Academy of Sciences and the Centers for Disease Control & Prevention (USA), respectively. The journal with the most publications was the Science of Total Environment, and the most cited one was the Environmental Health Perspectives. The most productive and cited author was Calafat A. M. (USA). The most cited reference was "Phthalates: toxicology and exposure." Four hotspot issues were as follows: influences of DEHP on the organisms and its possible mechanisms, assessment of DEHP exposure to the human and its metabolism, dynamics of DEHP in external environments, and indoor exposure of DEHP and health outcomes. The research trends were DNOP, preterm birth, gut microbiota, microplastics, lycopene, hypertension, and thyroid hormones. This study can provide researchers with new ideas and decision-makers with reference basis to formulate relevant policies.
Assuntos
Bibliometria , Dietilexilftalato , Humanos , Plastificantes , Ácidos Ftálicos , ChinaRESUMO
Peritubular macrophages (PTMφ) are predominantly localized near spermatogonial stem cells in the testis. We previously revealed that exposure of peripubertal male Fischer rats to mono-(2-ethylhexyl) phthalate (MEHP) leads to increased PTMφs in the testis. The mechanisms that trigger increases in PTMφs in the testis are poorly understood. However, MEHP exposure is known to both induce spermatocyte apoptosis and to perturb the blood-testis barrier (BTB). This study aims to elucidate the association between the disruption of BTB and the increases of PTMφs in the testis by comparing the effects observed with MEHP to 2 other testicular toxicants with variable effects on the BTB and subtype of germ cell undergoing apoptosis. Methoxyacetic acid (MAA) acts directly on spermatocytes and does not affect BTB function, whereas cadmium chloride (CdCl2) induces profound injury to BTB. The results indicated that MAA exposure significantly increased spermatocyte apoptosis, whereas no significant changes in the numbers of PTMφs in the testis occurred. In contrast, CdCl2 exposure disrupted BTB function and increased the abundance of PTMφs in the testis. To further investigate whether MEHP-induced changes in BTB integrity accounted for the increase in PTMφs, a plasmid for LG3/4/5, the functional component of laminin-alpha 2, was overexpressed in the testis to stabilize BTB integrity before MEHP exposure. The results showed that LG3/4/5 overexpression substantially reduced the ability of MEHP to compromise BTB integrity and prevented the increase in PTMφ numbers after MEHP exposure. These results indicate that BTB disruption is necessary to increase PTMφs in the testis induced by toxicants.
Assuntos
Apoptose , Barreira Hematotesticular , Dietilexilftalato , Macrófagos , Ratos Endogâmicos F344 , Testículo , Animais , Masculino , Barreira Hematotesticular/efeitos dos fármacos , Barreira Hematotesticular/patologia , Barreira Hematotesticular/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Macrófagos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Acetatos/toxicidade , Ratos , Espermatócitos/efeitos dos fármacos , Espermatócitos/patologiaRESUMO
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Assuntos
Doenças Cardiovasculares , Ácidos Ftálicos , Humanos , Doenças Cardiovasculares/induzido quimicamente , Ácidos Ftálicos/toxicidadeRESUMO
Phthalates are extensively used as plasticizers in diverse consumer care products but have been reported to cause adverse health effects in humans. A commonly used phthalate, di-2-ethylhexylphthalate (DEHP) causes developmental and reproductive toxicities in humans, but the associated molecular mechanisms are not fully understood. Mono-2-ethylhexylphthalate (MEHP), a hydrolytic product of DEHP generated by cellular esterases, is proposed to be the active toxicant. We conducted a screen for sensory irritants among compounds used in consumer care using an assay for human Transient Receptor Potential A1 (hTRPA1). We have identified MEHP as a potent agonist of hTRPA1. MEHP-induced hTRPA1 activation was blocked by the TRPA1 inhibitor A-967079. Patch clamp assays revealed that MEHP induced inward currents in cells expressing hTRPA1. In addition, the N855S mutation in hTRPA1 associated with familial episodic pain syndrome decreased MEHP-induced hTRPA1 activation. In summary, we report that MEHP is a potent agonist of hTRPA1 which generates new possible mechanisms for toxic effects of phthalates in humans.
Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Dietilexilftalato/toxicidade , Canal de Cátion TRPA1/genética , Ácidos Ftálicos/toxicidade , Hormônios Esteroides GonadaisRESUMO
Di-2-ethylhexyl phthalic acid (DEHP) is one of the most widely used plasticizers in the industry, which can improve the flexibility and durability of plastics. It is prone to migrate from various daily plastic products through wear and leaching into the surrounding environment and decompose into the more toxic metabolite mono-2-ethylhexyl phthalic acid (MEHP) after entering the human body. However, the impacts and mechanisms of MEHP on neuroblastoma are unclear. We exposed MYCN-amplified neuroblastoma SK-N-BE(2)C cells to an environmentally related concentration of MEHP and found that MEHP increased the proliferation and migration ability of tumor cells. The peroxisome proliferator-activated receptor (PPAR) ß/δ pathway was identified as a pivotal signaling pathway in neuroblastoma, mediating the effects of MEHP through transcriptional sequencing analysis. Because MEHP can bind to the PPARß/δ protein and initiate the expression of the downstream gene angiopoietin-like 4 (ANGPTL4), the PPARß/δ-specific agonist GW501516 and antagonist GSK3787, the recombinant human ANGPTL4 protein, and the knockdown of gene expression confirmed the regulation of the PPARß/δ-ANGPTL4 axis on the malignant phenotype of neuroblastoma. Based on the critical role of PPARß/δ and ANGPTL4 in the metabolic process, a non-targeted metabolomics analysis revealed that MEHP altered multiple metabolic pathways, particularly lipid metabolites involving fatty acyls, glycerophospholipids, and sterol lipids, which may also be potential factors promoting tumor progression. We have demonstrated for the first time that MEHP can target binding to PPARß/δ and affect the progression of neuroblastoma by activating the PPARß/δ-ANGPTL4 axis. This mechanism confirms the health risks of plasticizers as tumor promoters and provides new data support for targeted prevention and treatment of neuroblastoma.
Assuntos
Dietilexilftalato/análogos & derivados , Neuroblastoma , PPAR delta , PPAR beta , Ácidos Ftálicos , Humanos , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Proteína Proto-Oncogênica N-Myc , Plastificantes/toxicidade , Angiopoietinas/genética , Angiopoietinas/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , Proteína 4 Semelhante a AngiopoietinaRESUMO
Exposure of rodents to mono-(2-ethylhexyl) phthalate (MEHP) is known to disrupt the blood-testis barrier and cause testicular germ cell apoptosis. Peritubular macrophages (PTMφ) are a newly identified type of testicular macrophage that aggregates near the spermatogonial stem cell niche. We have previously reported that MEHP exposure increased the numbers of PTMφs by 6-fold within the testis of peripubertal rats. The underlying mechanism(s) accounting for this change in PTMφs and its biological significance is unknown. This study investigates if MEHP-induced alterations in PTMφs occur in rodents (PND 75 adult rats and PND 26 peripubertal mice) that are known to be less sensitive to MEHP-induced testicular toxicity. Results show that adult rats have a 2-fold higher basal level of PTMφ numbers than species-matched peripubertal animals, but there was no significant increase in PTMφ numbers after MEHP exposure. Peripubertal mice have a 5-fold higher basal level of PTMφ compared with peripubertal rats but did not exhibit increases in number after MEHP exposure. Further, the interrogation of the testis transcriptome was profiled from both the MEHP-responsive peripubertal rats and the less sensitive rodents via 3' Tag sequencing. Significant changes in gene expression were observed in peripubertal rats after MEHP exposure. However, adult rats showed lesser changes in gene expression, and peripubertal mice showed only minor changes. Collectively, the data show that PTMφ numbers are associated with the sensitivity of rodents to MEHP in an age- and species-dependent manner.
Assuntos
Dietilexilftalato , Dietilexilftalato/análogos & derivados , Testículo , Masculino , Ratos , Camundongos , Animais , Transcriptoma , Células de Sertoli , Roedores , Dietilexilftalato/toxicidade , MacrófagosRESUMO
This study aimed to investigate the impact of mono(2-ethylhexyl) phthalate (MEHP) on the proliferation, apoptosis, and migration of human foreskin fibroblast cells (HFF-1) and the role of the JNK signaling pathway in cell migration. HFF-1 cells were randomly assigned to the control group with 0 MEHP exposure (M0) or the experimental groups with 25, 50, 100, 200, and 400 µmol/L MEHP exposure (M25, M50, M100, M200, and M400, respectively). After 24 and 48 h of MEHP exposure, the proliferation of HFF-1 cells in any group had no significant change. However, compared with the M0 group, the M200 and M400 groups presented substantially increased apoptosis of HFF-1 cells. Moreover, cell migration ability significantly decreased in all groups (p < 0.05). Additionally, the transcription and phosphorylated protein activation of JNK kinase in HFF-1 cells were substantially upregulated with the increase in MEHP exposure. Subsequently, HFF-1 cells were randomly divided into three groups: the DMSO blank control group, the 100 µM MEHP experimental group (M100), and the 100 µM MEHP plus 10 µM SP600125 (specific JNK inhibitor) experimental group (S10). The activation of JNK protein in HFF-1 cells was substantially downregulated in the S10 group. HFF-1 cells were also divided into the blank control group (M0). They were treated with 100 µM MEHP and varying concentrations of SP600125 (5, 10, and 15 µM for S5, S10, and S15, respectively). As the concentration of the antagonist increased, the migration ability of HFF-1 cells was returned to normal. Finally, the ROS in HFF-1 cells increased under MEHP exposure. This finding indicates that the regulation of cell migration by the JNK signaling pathway may be important in the occurrence of hypospadias.
Assuntos
Fibroblastos , Prepúcio do Pênis , Masculino , Humanos , Antracenos/farmacologiaRESUMO
Correct fetal testis development underpins adult male fertility, and TGFß superfamily ligands control key aspects of this process. Transcripts encoding one such ligand, activin A, are upregulated in testes after sex determination and remain high until after birth. Testis development requires activin signalling; mice lacking activin A (Inhba KO) display altered somatic and germ cell proliferation, disrupted cord elongation and altered steroid synthesis. In human pregnancies with pre-eclampsia, the foetus is inappropriately exposed to elevated activin A. To learn how this affects testis development, we examined mice lacking the potent activin inhibitor, inhibin, (Inha KO) at E13.5, E15.5 and PND0. At E13.5, testes appeared similar in WT and KO littermates, however E15.5 Inha KO testes displayed two germline phenotypes: (1) multinucleated germ cells within cords, and (2) germ cells outside of cords, both of which are documented following in utero exposure to endocrine disrupting phthalates in rodents. Quantitation of Sertoli and germ cells in Inha KO (modelling elevated activin A) and Inhba KO (low activin A) testes using immunofluorescence demonstrated activin A bioactivity determines the Sertoli/germ cell ratio. The 50% reduction in gonocytes in Inha KO testes at birth indicates unopposed activin A has a profound impact on embryonic germ cells. Whole testis RNAseq on Inha KO mice revealed most transcripts affected at E13.5 were present in Leydig cells and associated with steroid biosynthesis/metabolism. In agreement, androstenedione (A4), testosterone (T), and the A4:T ratio were reduced in Inha KO testes at E17.5, confirming unopposed activin A disrupts testicular steroid production. E15.5 testes cultured with either activin A and/or mono-2-ethylhexyl phthalate (MEHP) generated common histological and transcriptional outcomes affecting germline and Leydig cells, recapitulating the phenotype observed in Inha KO testes. Cultures with activin A and MEHP together provided evidence of common targets. Lastly, this study extends previous work focussed on the Inhba KO model to produce a signature of activin A bioactivity in the fetal testis. These outcomes show the potential for elevated activin A signalling to replicate some aspects of fetal phthalate exposure prior to the masculinization programming window, influencing fetal testis growth and increasing the risk of testicular dysgenesis.
Assuntos
Ativinas , Testículo , Adulto , Feminino , Gravidez , Humanos , Masculino , Animais , Camundongos , Células Germinativas , EsteroidesRESUMO
Phthalates in contaminated foods and personal care products are one of the most frequently exposed chemicals with a public health concern. Phthalate exposure is related to cardiovascular diseases, including diabetic vascular complications and cerebrovascular diseases, yet the mechanism is still unclear. The blood-brain barrier (BBB) integrity disruption is strongly associated with cardiovascular and neurological disease exacerbation. We investigated BBB damage by di-(2-ethylhexyl) phthalate (DEHP) or its metabolite mono-(2-ethylhexyl) phthalate (MEHP) using brain endothelial cells and rat models. BBB damage by the subthreshold level of MEHP, but not a DEHP, significantly increased by the presence of methylglyoxal (MG), a reactive dicarbonyl compound whose levels increase in the blood in hyperglycemic conditions in diabetic patients. Significant potentiation in apoptosis and autophagy activation, mitochondria-derived reactive oxygen species (ROS) production, and mitochondrial metabolic disturbance were observed in brain ECs by co-exposure to MG and MEHP. N-acetyl cysteine (NAC) restored autophagy activation as well as tight junction protein impairment induced by co-exposure to MG and MEHP. Intraperitoneal administration of MG and MEHP significantly altered mitochondrial membrane potential and tight junction integrity in rat brain endothelium. This study may provide novel insights into enhancing phthalate toxicity in susceptible populations, such as diabetic patients.
Assuntos
Dietilexilftalato , Ratos , Animais , Dietilexilftalato/toxicidade , Aldeído Pirúvico , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Estresse Oxidativo , Metabolismo Energético , Mitocôndrias/metabolismoRESUMO
Di (2-ethylhexyl) phthalate (DEHP), one of phthalic acid esters, has been widely used in daily products. Its main metabolite, mono (2-ethylhexyl) phthalate (MEHP) was reported to possess higher testicular toxicity than DEHP. To explore the precise mechanism in MEHP-induced testis damage, multiple transcriptomic sequencing was employed in spermatogonia cell line GC-1 cells treated with MEHP (0, 100, and 200 µM) for 24 h. Integrative omics analysis and empirical validation revealed that Wnt signaling pathway was downregulated and wnt10a, one of hub genes, may be the key player in this process. Similar results were observed in DEHP-exposed rats. MEHP-induced disturbance of self-renewal and differentiation was dose-dependent. Moreover, self-renewal proteins were downregulated; the differentiation level was stimulated. Meanwhile, GC-1 proliferation was decreased. Stable transformation strain of wnt10a overexpression GC-1 cell line constructed from lentivirus was utilized in this study. The upregulation of Wnt10a significantly reversed the dysfunction of self-renewal and differentiation and promoted the cell proliferation. Finally, retinol, predicted to be useful in CONNECTIVITY MAP (cMAP), failed to rescue the damage caused by MEHP. Cumulatively, our findings revealed that the downregulation of Wnt10a induced the imbalance of self-renew and differentiation, and inhibition of cell proliferation in GC-1 cells after MEHP exposure.
Assuntos
Dietilexilftalato , Ácidos Ftálicos , Masculino , Ratos , Animais , Regulação para Baixo , Transcriptoma , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Diferenciação Celular , Proliferação de Células , Proteínas Wnt/metabolismoRESUMO
Mono-2-ethylhexyl phthalate (MEHP) exposure is known to induce severe testicular injury via reactive oxygen species (ROS). However, few effective treatments are available for the precise treatment of MEHP-induced germ cell damage. Epigallocatechin gallate (EGCG), one of the major polyphenols in green tea, has potential antioxidant activity and can alleviate many diseases induced by oxidative stress. This study explored whether EGCG protects germ cells from MEHP-induced oxidative stress damage. Cells were treated with 400 µM MEHP and 60 µM EGCG for 24 h. EGCG reduced MEHP-induced ROS overgeneration in the spermatogonial cell line GC-1 and spermatocyte cell line GC-2. Western blotting and immunofluorescence showed that the MEHP+EGCG group exhibited lower nuclear factor (erythroid-derived 2)-like 2 (NRF2), heme oxygenase (decycling) 1 (HO-1), and superoxide dismutase (SOD) expression than the MEHP group. Moreover, activation of the mammalian target of rapamycin (mTOR) pathway was decreased. The expression of key factors of pyroptosis was downregulated, and interleukin-10 (IL-10) expression was reduced. Additionally, apoptosis was inhibited by EGCG. The findings indicate that EGCG protects against MEHP-induced germ cell pyroptosis by scavenging ROS, suppressing the mTOR pathway, and inhibiting pyroptosis. EGCG may thus be a potential treatment for MEHP-related spermatogenic dysfunction.
Assuntos
Catequina , Piroptose , Masculino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Heme Oxigenase-1/metabolismo , Serina-Treonina Quinases TOR , Catequina/farmacologiaRESUMO
BACKGROUND: Adiponectin is a key protein produced in adipose tissue, with crucial involvement in multiple metabolic processes. Di-(2-ethylhexyl) phthalate (DEHP), one of the phthalate compounds used as a plasticizer, has been shown to decrease adiponectin levels in vitro and in vivo studies. However, the role of angiotensin I-converting enzyme (ACE) gene polymorphism and epigenetic changes in the relationship between DEHP exposure and adiponectin levels is not well understood. METHODS: This study examined the correlation between urine levels of DEHP metabolite, epigenetic marker 5mdC/dG, ACE gene phenotypes, and adiponectin levels in a sample of 699 individuals aged 12-30 from Taiwan. RESULTS: Results showed a positive relationship between mono-2-ethylhexyl phthalate (MEHP) and 5mdC/dG, and a negative association between both MEHP and 5mdC/dG with adiponectin. The study found that the inverse relationship between MEHP and adiponectin was stronger when levels of 5mdC/dG were above the median. This was supported by differential unstandardized regression coefficients (- 0.095 vs. - 0.049, P value for interaction = 0.038)). Subgroup analysis also showed a negative correlation between MEHP and adiponectin in individuals with the I/I ACE genotype, but not in those with other genotypes, although the P value for interaction was borderline significant (0.06). The structural equation model analysis indicated that MEHP has a direct inverse effect on adiponectin and an indirect effect via 5mdC/dG. CONCLUSIONS: In this young Taiwanese population, our findings suggest that urine MEHP levels are negatively correlated with serum adiponectin levels, and epigenetic modifications may play a role in this association. Further study is needed to validate these results and determine causality.
Assuntos
Dietilexilftalato , Peptidil Dipeptidase A , Adiponectina/genética , Adiponectina/metabolismo , Dietilexilftalato/análise , Dietilexilftalato/metabolismo , Metilação de DNA , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Humanos , TaiwanRESUMO
OBJECTIVE: MEHP, as the metabolite of DEHP, is a widely used environmental endocrine disruptor. Ovarian granulosa cells participate in maintaining the function of ovary and COX2/PGE2 pathway may regulate the function of granulosa cells. We aimed to explore how COX-2/PGE2 pathway affects cell apoptosis in ovarian granulosa cells caused by MEHP. METHODS: Primary rat ovarian granulosa cells were treated with MEHP (0, 200, 250, 300 and 350 µM) for 48 h. Adenovirus was used for over-expression of COX-2 gene. The cell viability was tested with CCK8 kits. The apoptosis level was tested by flow cytometry. The levels of PGE2 were tested with ELISA kits. The expression levels of COX-2/PGE2 pathway related genes, ovulation-related genes and apoptosis-related genes, were measured with RT-qPCR and Western blot. RESULTS: MEHP decreased the cell viability. After MEHP exposure, the cell apoptosis level increased. The level of PGE2 markedly decreased. The expression levels of COX-2/PGE2 pathway related genes, ovulation-related genes and anti-apoptotic genes decreased; the expression levels of pro-apoptotic genes increased. The apoptosis level was alleviated after over-expression of COX-2, and the level of PGE2 slightly increased. The expression levels of PTGER2 and PTGER4, and the levels of ovulation-related genes increased; the levels of pro-apoptotic genes decreased. CONCLUSION: MEHP can cause cell apoptosis by down-regulating the levels of ovulation-related genes via COX-2/PGE2 pathway in rat ovarian granulosa cells.
Assuntos
Dinoprostona , Transdução de Sinais , Animais , Feminino , Ratos , Apoptose , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células da Granulosa/metabolismoRESUMO
Di-(2-ethylhexyl) phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) can induce hepatic lipid metabolism disorders, while the molecular mechanism still remain unknown. We aim to explore the underlying mechanism of Notch signaling pathway on hepatic lipid accumulation induced by DEHP/MEHP. A total of 40 male wistar rats were exposed to DEHP (0, 5, 50, and 500 mg/kg/d) for 8 weeks, BRL-3A hepatocytes were exposed to MEHP (0, 10, 50, 100, and 200 µM) for 24 h. About 50 µM DAPT and 100 µg/mL Aspirin were used to inhibit Notch pathway and prevent inflammation, respectively. Real-Time PCR was performed to detect the mRNA expression, western blot and immunofluorescence were used to detect the protein expression. Lipids and inflammatory factors levels were determined by commercial kits. The results showed that DEHP/MEHP promoted the expression of Notch pathway molecules and lipids accumulation in rat livers/BRL-3A cells. The up-regulated Notch receptors were correlated with the TG levels in the rat liver. MEHP increased the levels of IL-8 and IL-1ß. The lipids levels were reduced after anti-inflammation. The inhibition of Notch pathway reversed the elevation of inflammation and lipid accumulation caused by MEHP. In conclusion, this study demonstrated that DEHP/MEHP led to lipid accumulation in hepatocytes by up-regulating Notch pathway and the inflammation might play a key role in the process.
Assuntos
Dietilexilftalato , Ratos , Animais , Masculino , Dietilexilftalato/metabolismo , Fígado/metabolismo , Ratos Wistar , Transdução de Sinais , Inflamação , LipídeosRESUMO
Phthalates are ubiquitous plasticizer chemicals found in consumer products. Exposure to phthalates during pregnancy has been associated with adverse pregnancy and birth outcomes and differences in placental gene expression in human studies. The objective of this research was to evaluate global changes in placental gene expression via RNA sequencing in two placental cell models following exposure to the phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP). HTR-8/SVneo and primary syncytiotrophoblast cells were exposed to three concentrations (1, 90, 180 µM) of MEHP for 24 h with DMSO (0.1%) as a vehicle control. mRNA and lncRNAs were quantified using paired-end RNA sequencing, followed by identification of differentially expressed genes (DEGs), significant KEGG pathways, and enriched transcription factors (TFs). MEHP caused gene expression changes across all concentrations for HTR-8/SVneo and primary syncytiotrophoblast cells. Sex-stratified analysis of primary cells identified different patterns of sensitivity in response to MEHP dose by sex, with male placentas being more responsive to MEHP exposure. Pathway analysis identified 11 KEGG pathways significantly associated with at least one concentration in both cell types. Four ligand-inducible nuclear hormone TFs (PPARG, PPARD, ESR1, AR) were enriched in at least three treatment groups. Overall, we demonstrated that MEHP differentially affects placental gene expression based on concentration, fetal sex, and trophoblast cell type. This study confirms prior studies, as enrichment of nuclear hormone receptor TFs were concordant with previously published mechanisms of phthalate disruption, and generates new hypotheses, as we identified many pathways and genes not previously linked to phthalate exposure.
Assuntos
Dietilexilftalato , Ácidos Ftálicos , Masculino , Gravidez , Feminino , Humanos , Placenta , Trofoblastos , Transcriptoma , Ácidos Ftálicos/metabolismoRESUMO
Phthalate exposure is associated with reproductive health, but the mechanism is unclear. This study used human chorionic trophoblast epithelial cells (HTR8/Svneo cells) and mouse embryos as objects aims to explore the effects of phthalate plasticizers on germ cells and fertility and the possible signalling pathways. In the present study, high concentrations of MEHP for 24 h significantly inhibited the proliferation and viability of HTR8/SVneo cells. Compared with the negative control (NC) group, the MEHP medium and high concentration groups promoted the apoptosis of HTR8/SVneo cells and inhibited the cell cycle, HTR8/SVneo cells were blocked in G1/G0 phase and could not enter S phase, and cell meiosis was inhibited. Western blot experiments showed that there was no difference in the protein expression of wnt inhibitory factor 1 (WIF1) and ß-catenin in HTR8/SVneo cells between the MEHP exposure groups and the NC groups. In vitro embryo culture experiments found that there was no difference in blastocyst formation rate among groups after exposure to DEHP for 2 h. Immunofluorescence showed that the expression of WIF1 decreased in the low concentration group, and there was no difference in the medium and high concentration groups, while the expression of ß-catenin was increased in both the low concentration group and the high concentration group. Our data suggest that exposure to phthalate plasticizers can affect the viability, cell cycle and apoptosis of trophoblast cells, resulting in abnormal expression of the embryonic WIF1/ß-catenin signalling pathway and impaired fertility.
Assuntos
Trofoblastos , beta Catenina , Gravidez , Feminino , Humanos , Animais , Camundongos , Trofoblastos/metabolismo , beta Catenina/metabolismo , Plastificantes/toxicidade , Plastificantes/metabolismo , Linhagem Celular , Desenvolvimento Embrionário , Movimento CelularRESUMO
For the efficient removal of the bio-refractory organic pollutants in the electronic industry wastewater, the Ni-Fe (oxides) modified three-dimension (3D) particle electrode was applied in electro-Fenton system (3D/EF), where iron ions were released from anode and deposited onto algal biochar (ABC) to prepare composite catalyst during reaction process. Firstly, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis were applied to confirm successful fabrication of the 3D particle electrode materials. Secondly, COD removal efficiency could reach about 80%, which was about 20% higher than that in 2D/EF system, under the optimized conditions as 2.0 g/L of Ni-ABC particle electrodes, initial pH of 3, 100 mL/min of aeration intensity and 20 mA/cm2 of applied current density. Thirdly, characterized using three-dimensional fluorescence spectroscopy and GC-MS analysis, it seemed that most of the macromolecular substances could be degraded, whereas mono-2-ethylhexyl phthalate (MEHP) was identified as the most abundant and representative compound. Finally, possible degradation pathway of MEHP in 3D/EF system was proposed including dealkylation, cleavage of C-O bond, and demethylation. Therefore, this study provides a new strategy in designing EF system employing bimetal doped biochar composite for an efficient elimination of organic pollutants within electronic industry wastewater.