Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.054
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15044, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951634

RESUMO

Acoustic metamaterials are growing in popularity for sound applications including noise control. Despite this, there remain significant challenges associated with the fabrication of these materials for the sub-100 Hz regime, because acoustic metamaterials for such frequencies typically require sub-mm scale features to control sound waves. Advances in additive manufacturing technologies have provided practical methods for rapid fabrication of acoustic metamaterials. However, there is a relatively high sensitivity of their resonant characteristics to sub-mm deviations in geometry, pushing the limits of additive manufacturing. One way of overcoming this is via active control of device resonance. Here, an acoustic metamaterial cell with adjustable resonance is demonstrated for the sub-100 Hz regime. A functionally superparamagnetic membrane-devised to facilitate the fabrication process by eliminating magnetic poling requirements-is engineered using stereolithography, and its mechanical and acoustic properties are experimentally measured using laser Doppler vibrometry and electret microphone testing, with a mathematical model developed to predict the cell response. It is demonstrated that an adjustable magnetic acoustic metamaterial can be fabricated at ultra-subwavelength dimensions ( ≤ λ /77.5), exhibiting adjustable resonance from 88.73 to 86.63 Hz. It is anticipated that this research will drive new innovations in adjustable metamaterials, including wider frequency ranges.

2.
Chem Phys Lipids ; 263: 105417, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950675

RESUMO

Chondroitin sulfates (CSs) are important components of the extracellular matrix and side chains of membrane proteoglycans. These polysaccharides are, therefore, likely to interact with plasma membranes and play a significant role in modulating cellular functions. So far, the details of the processes occurring at the interface between the extracellular matrix and cellular membranes are not fully understood. In this study, we used experimental methods and atomic-scale molecular dynamics (MD) simulations to reveal the molecular picture of the interactions between CS and phosphocholine (PC) membranes, used as a simplified model of cell membranes. MD simulations reveal that the polysaccharide associates to the PC bilayer as a result of electrostatic interactions between the positively charged quaternary ammonium groups of choline and the negatively charged sulfate groups of CS. Compared to an aqueous medium, the adsorbed polysaccharide chains adopt more elongated conformations, which facilitates the electrostatic interactions with the membrane, and have a high degree of freedom to change their conformations and to adhere to and detach from the membrane surface. Penetrating slightly between the polar groups of the bilayer, they form a loosely anchored layer, but do not intrude into the hydrophobic region of the PC bilayer. The CS adsorption spread the PC headgroups apart, which is manifested by an increase in the value of the area pre lipid. The expansion of the lipid polar groups weakens the dispersion interactions between the lipid acyl chains. As a result, the lipid membrane in the membrane-polysaccharide contact areas becomes more fluid. Our outcomes may help to understand in detail the interaction of chondroitin sulfate with zwitterionic membranes at the molecular level, which is of biological interest since many biological processes depend on lipid-CS interactions.

3.
J Colloid Interface Sci ; 674: 925-937, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38959738

RESUMO

Proton exchange membranes with high ionic conductivity and good chemical stability are critical for achieving high power density and long lifespan of direct methanol cells (DMFCs). Herein, a zwitterionic molecule was grafted onto the surface of polyvinylidene fluoride (PVDF) nanofibers to obtain functionalized PVDF porous substrate (SBMA-PDA@PVDF). Then, sulfonated poly(ether ether ketone) (SPEEK) was filled into the pores of SBMA-PDA@PVDF, and further ionic cross-linked via H2SO4 to prepare the composite membrane (SBMA-PDA@PVDF/SPEEK). The basic groups on the zwitterionic interface could not only establish ionic cross-linking with SPEEK to increase chemical stability and reduce swelling, but also serve as the adsorption sites for subsequent H2SO4 cross-linking to significantly enhance proton conductivity. Super-high proton conductivity (165.34 mS cm-1, 80 °C) was achieved for the membrane, which was 2.12 times higher than that of the pure SPEEK. Moreover, the SBMA-PDA@PVDF/SPEEK membrane exhibited remarkably improved oxidative stability of 91.6 % mass retention after soaking in Fenton's agent for 12 h, while pure SPEEK completely decomposed. Satisfactorily, the DMFC assembled with SBMA-PDA@PVDF/SPEEK exhibited a peak power density of 99.01 mW cm-2, which was twice as much as that of commercial Nafion 212 (48.88 mW cm-2). After 235 h durability test, only 11 % voltage loss was observed.

4.
Methods Enzymol ; 700: 455-483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971610

RESUMO

Over the years, it has become more and more obvious that lipid membranes show a very complex behavior. This behavior arises in part from the large number of different kinds of lipids and proteins and how they dynamically interact with each other. In vitro studies using artificial membrane systems have shed light on the heterogeneity based on lipid-lipid interactions in multicomponent bilayer mixtures. Inspired by the raft hypothesis, the coexistence of liquid-disordered (ld) and liquid-ordered (lo) phases has drawn much attention. It was shown that ternary lipid mixtures containing low- and high-melting temperature lipids and cholesterol can phase separate into a lo phase enriched in the high-melting lipids and cholesterol and a ld phase enriched in the low-melting lipids. Depending on the model membrane system under investigation, different domain sizes, shapes, and mobilities have been found. Here, we describe how to generate phase-separated lo/ld phases in model membrane systems termed pore-spanning membranes (PSMs). These PSMs are prepared on porous silicon substrates with pore sizes in the micrometer regime. A proper functionalization of the top surface of the substrates is required to achieve the spreading of giant unilamellar vesicles (GUVs) to obtain PSMs. Starting with lo/ld phase-separated GUVs lead to membrane heterogeneities in the PSMs. Depending on the functionalization strategy of the top surface of the silicon substrate, different membrane heterogeneities are observed in the PSMs employing fluorescence microscopy. A quantitative analysis of the heterogeneity as well as the dynamics of the lipid domains is described.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Porosidade , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Colesterol/química
5.
Biochem Genet ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995529

RESUMO

While dried blood spots are a convenient source of genetic material, they are usually associated with a lower DNA yield than from a native sample. The study evaluated the DNA yield from dried blood samples prepared on glass fibre and cellulose membranes and investigated the reasons for the yield reduction. The extraction of total DNA from membrane-dried blood samples was optimized by spin-column extraction method. It was shown that preliminary short-term (20 min) solubilization of a dried matrix in an aqueous medium, followed by standard extraction protocols for the mixture of the eluate with membranes, provides the highest DNA yield. The yield of DNA from a glass fibre membrane was 40-50% lower compared to a native sample, but on average, two times higher than from a conventional cellulose membrane (filter paper). The reduction of DNA yield when using a dried sample was found to be due to partial retention of nucleic acids by the membrane material during the lysis stage.

6.
Cureus ; 16(6): e61754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975370

RESUMO

Introduction Preterm prelabor rupture of membrane (PPROM) contributes to increasing rates of preterm birth, causing greater health risks for newborns. While the mechanisms driving PPROM are not well understood, one hypothesis is that it is due to systemic inflammation, which can be caused by obesity defined as a BMI [Formula: see text]30 kg/m2. The specific aim of the study was to compare neonatal outcomes after PPROM between patients who were obese vs not obese in early pregnancy at a tertiary medical center serving an Appalachian population. Methods An observational, descriptive retrospective review was conducted of the medical records of patients who were diagnosed with PPROM from January 2017 through December 2020. Patients with a single gestation at the time of PPROM without evidence of clinical infection requiring immediate delivery were included. Maternal characteristics, latency management, and birth outcomes were compared between obese ([Formula: see text]30 BMI) and non-obese (<30 BMI) patients. Results Of the 214 women in the study, 129 (60.3%) were obese pre-pregnancy and 85 (39.7%) were not. Most PPROM occurred between 32 and 36 weeks of gestation (145 patients, 67.8%), with 19.2% occurring at 26-31 weeks (41 patients), and 13.2% at <26 weeks of gestation (28 patients). Latency, defined as the days between PPROM and delivery, ranged from 0 to 80 days with a mean of 4.9 + 10.9 days. At least one day of latency was achieved for most patients (144/214; 67.3%). When outcomes were compared between obese and nonobese patients, the obese patients experienced significantly more complications (10.1% vs 2.4%; p=0.031), which were accompanied by greater neonatal morbidity 67 of 129 ((51.9%) vs 30 of 85 (35.3%); p=0.018). Obese women had greater odds that their newborns would experience neonatal morbidity than nonobese women (odds ratio, 1.98; 95% confidence interval, 1.1-3.5). Conclusion This study of Appalachian women found that pre-pregnancy BMI [Formula: see text]30 increased the risk of complications and neonatal morbidity after PPROM. To improve birth outcomes, healthcare workers and policymakers must work together to decrease rates of obesity in Appalachian women at or near childbearing age.

7.
Am J Obstet Gynecol MFM ; : 101423, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977063

RESUMO

BACKGROUND: Seven days of antibiotics are recommended in the setting of preterm premature rupture of membranes (PPROM) to promote latency. Azithromycin has generally replaced a seven-day course of erythromycin in current clinical practice. Azithromycin clears from plasma quickly and concentrates in local tissue which is why daily dosing is not always needed and local tissue, rather than plasma, concentrations are used to determine dosing. Based on limited pharmacokinetic studies in pregnancy, 1g one time dose of azithromycin may not maintain local (amniotic fluid) drug concentrations above minimum inhibitory concentrations (MIC50) for common genitourinary pathogens (50-500ng/ml). OBJECTIVE: We aim to compare the pharmacokinetics of one-time vs daily dosing of azithromycin in the setting of preterm pre-labor rupture of membranes (PPROM) STUDY DESIGN: This is a randomized clinical trial of singletons with PPROM randomized to 1gram oral azithromycin once or 500mg oral azithromycin daily x7 days. Primary outcome was amniotic fluid azithromycin concentrations over 8 days. Secondary outcomes included plasma azithromycin trough concentrations. Plasma was collected at time points 1-4hrs and 12-24hrs after first dose, and then every 24hrs through 8 days. Amniotic fluid was collected opportunistically throughout the day noninvasively with Always Flex-foam pads. We aimed to enroll 20 participants to achieve N=5 still pregnant through 8 days in each group. Continuous variables compared with Mann Whitney U test and relationship between azithromycin concentration and time assessed with linear regression. RESULTS: The study was halted after N=6 enrolled due to lagging enrollment, with 3 in each group. The mean gestational age of enrollment was 27.1±1.7weeks in the 1g group and 31.0±1.4 weeks in the 500mg daily group. One participant in each group had latency to delivery >7days. Regarding amniotic fluid azithromycin concentration, there was a difference in change in amniotic fluid azithromycin concentration over time between groups (p<0.001). Amniotic fluid concentration of azithromycin was relatively stable in the 1g once group (B=-0.07 (-0.44 - 0.31), p=0.71), in contrast, amniotic fluid concentration (ng/ml) increased over time (hours) in the 500mg daily group (B=1.3 (0.7 - 1.9), p<0.001). By ≥96hours median amniotic fluid levels of azithromycin were lower in the 1g once dosing group (median 11[7-56]) compared to 500mg daily (median 46 [23-196]), with a median difference -27 (-154 to -1), p=0.03. In plasma, there was higher azithromycin concentration during the first 24hrs with 1g once vs 500mg daily (median difference 637ng/ml (101-1547), p=0.01), however by ≥96hrs plasma azithromycin declined and was virtually undetectable in the 1g once group, while trough plasma levels in the 500mg remained elevated (median difference -207ng/ml (-271 to -155), p=0.03). CONCLUSION: 500mg daily dosing of azithromycin maintains higher amniotic fluid concentrations, and more consistently greater than common MICs, over eight days compared to 1g once in the setting of PPROM.

8.
J Nanobiotechnology ; 22(1): 410, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992774

RESUMO

Recapitulating the natural extracellular physical microenvironment has emerged as a promising method for tissue regeneration, as multiple physical interventions, including ultrasound, thermal and electrical therapy, have shown great potential. However, simultaneous coupling of multiple physical cues to highly bio-mimick natural characteristics for improved tissue regeneration still remains formidable. Coupling of intrinsic electrical and mechanical cues has been regarded as an effective way to modulate tissue repair. Nevertheless, precise and convenient manipulation on coupling of mechano-electrical signals within extracellular environment to facilitate tissue regeneration remains challengeable. Herein, a photothermal-sensitive piezoelectric membrane was designed for simultaneous integration of electrical and mechanical signals in response to NIR irradiation. The high-performance mechano-electrical coupling under NIR exposure synergistically triggered the promotion of osteogenic differentiation of stem cells and enhances bone defect regeneration by increasing cellular mechanical sensing, attachment, spreading and cytoskeleton remodeling. This study highlights the coupling of mechanical signals and electrical cues for modulation of osteogenesis, and sheds light on alternative bone tissue engineering therapies with multiple integrated physical cues for tissue repair.


Assuntos
Regeneração Óssea , Diferenciação Celular , Osteogênese , Animais , Camundongos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Humanos
9.
Front Physiol ; 15: 1330702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994451

RESUMO

Fetal membrane providing mechanical support and immune protection for the growing fetus until it ruptures during parturition. The abnormalities of fetal membrane (thickening, separation, etc.) are related to adverse perinatal outcomes such as premature delivery, fetal deformities and fetal death. As a noninvasive method, imaging methods play an important role in prenatal examination. In this paper, we comprehensively reviewed the manuscripts on fetal membrane imaging method and their potential role in predicting adverse perinatal fetal prognosis. We also discussed the prospect of artificial intelligence in fetal membrane imaging in the future.

10.
J Colloid Interface Sci ; 675: 958-969, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002245

RESUMO

Graphene oxide (GO) membranes have emerged as promising candidates for water purification applications, owing to their unique physicochemical attributes. Nevertheless, the trade-off between permeability and selectivity, coupled with their vulnerability to membrane fouling, poses significant challenges to their widespread industrial deployment. In this study, we introduce an innovative in-situ growth and layer-by-layer assembly technique for fabricating multilayer GO membranes reinforced with bismuth oxybromide (BiOBr) on commonly employed Nylon substrates. This method allows for the creation of two-dimensional lamellar membranes capable of photocatalytic self-cleaning and tunable nanochannel dimensions. The synthesized GO/BiOBr composite membranes exhibit remarkable water permeance rates (approximately 493.9 LMH/bar) and high molecular rejection efficiency (>99 % for Victoria Blue B and Congo Red dyes). Notably, these membranes showcase an enhanced photocatalytic self-cleaning performance upon exposure to visible light. Our work provides a viable route for the fabrication of functionalized GO-based nanofiltration membranes with BiOBr inclusions, offering a synergistic combination of high water permeability, modifiable nanochannels, and effective self-cleaning capabilities through photocatalysis.

11.
Chemosphere ; 363: 142808, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992443

RESUMO

The design of hydrophilic polyvinylidene fluoride (PVDF) membranes with anti-fouling properties has been explored for decades. Surface modification and blending are typical strategies to tailor the hydrophilicity of PVDF membranes. Herein, cyclodextrin was used to improve the antifouling performance of PVDF membranes. Cyclodextrin-modified PVDF membranes were prepared by coupling PVDF amination (blending with branched polyethyleneimine) and activated cyclodextrin grafting. The blending of PEI in the PVDF casting solution preliminarily aminated the PVDF, resulting in PEI-crosslinked/grafted PVDF membranes after phase inversion. Aldehydes groups on cyclodextrin, introduced by oxidation, endow cyclodextrin to be grafted on the aminated PVDF membrane by the formation of imines. Borch reduction performed on the activated cyclodextrin-grafted PVDF membrane converted the imine bonds to secondary amines, ensuring the membrane stability. The resulting membranes possess excellent antifouling performance, with a lower protein adsorption capacity (5.7 µg/cm2, indicated by Bovine Serum Albumin (BSA)), and a higher water flux recovery rate (FRR = 96%). The proposed method provides a facial strategy to prepare anti-fouling PVDF membranes.

12.
J Colloid Interface Sci ; 675: 689-699, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38996699

RESUMO

A series of membrane materials suitable for high-temperature proton exchange membranes (HT-PEM) were successfully prepared by introducing polymeric ionic liquids (PILs) containing quaternary ammonium groups into ether-bonded polybenzimidazole (OPBI). The structure of the cross-linked membrane has a strong interaction with phosphoric acid (PA), which enhances proton transport and PA retention. To ensure better overall performance of the cross-linked membrane, the optimal PIL content is 30 wt% (OPBI-PIL-30 %). The PA uptake of OPBI-PIL-30 % membrane was 323.24 %, and the proton conductivity at 180 â„ƒ was 113.94 mS cm-1, which was much higher than that of OPBI membrane. It is noteworthy that the PA retention of OPBI-PIL-30 % membrane could reach 71.38 % after 240 h of testing under the harsh environment of 80 â„ƒ/40 % RH. The membrane showed better acid retention capacity of 86.89 % at 160 â„ƒ under anhydrous environment. The OPBI-PIL-20 % membrane achieved the maximum power density of 436.19 mW cm-2, attributed to its favorable mechanical characteristics and proton conductivity. By these excellent properties, it is shown that OPBI-PIL-X membranes containing quaternary ammonium groups have the potential to be applied in high temperature proton exchange membrane fuel cells (HT-PEMFCs).

13.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000318

RESUMO

This study is focused on fractionation of insulin-like growth factor I (IGF-I) and transforming growth factor-ß2 (TGF-ß2) using a new electro-based membrane process calledelectrodialysis with filtration membranes (EDFM). Before EDFM, different pretreatments were tested, and four pH conditions (4.25, 3.85, 3.45, and 3.05) were used during EDFM. It was demonstrated that a 1:1 dilution of defatted colostrum with deionized water to decrease mineral content followed by the preconcentration of GFs by UF is necessary and allow for these compounds to migrate to the recovery compartment during EDFM. MS analyses confirmed the migration, in low quantity, of only α-lactalbumin (α-la) and ß-lactoglobulin (ß-lg) from serocolostrum to the recovery compartment during EDFM. Consequently, the ratio of GFs to total protein in recovery compartment compared to that of feed serocolostrum solution was 60× higher at pH value 3.05, the optimal pH favoring the migration of IGF-I and TGF-ß2. Finally, these optimal conditions were tested on acid whey to also demonstrate the feasibility of the proposed process on one of the main by-products of the cheese industry; the ratio of GFs to total protein was 2.7× higher in recovery compartment than in feed acid whey solution, and only α-la migrated. The technology of GF enrichment for different dairy solutions by combining ultrafiltration and electrodialysis technologies was proposed for the first time.


Assuntos
Diálise , Filtração , Diálise/métodos , Filtração/métodos , Fator de Crescimento Insulin-Like I/análise , Concentração de Íons de Hidrogênio , Membranas Artificiais , Laticínios/análise , Animais , Colostro/química , Bovinos , Soro do Leite/química , Lactoglobulinas/química , Lactoglobulinas/análise , Lactalbumina/química , Lactalbumina/análise
14.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001071

RESUMO

Solid-contact ion-selective electrodes (SC-ISEs) have the advantages of easy miniaturization, even chip integration, easy carrying, strong stability, and more favorable detection in complex environments. They have been widely used in conjunction with portable, wearable, and intelligent detection devices, as well as in on-site analysis and timely monitoring in the fields of environment, industry, and medicine. This article provides a comprehensive review of the composition of sensors based on redox capacitive and double-layer capacitive SC-ISEs, as well as the ion-electron transduction mechanisms in the solid-contact (SC) layer, particularly focusing on strategies proposed in the past three years (since 2021) for optimizing the performance of SC-ISEs. These strategies include the construction of ion-selective membranes, SC layer, and conductive substrates. Finally, the future research direction and possibilities in this field are discussed and prospected.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39014139

RESUMO

The occurrence of sex steroid hormones, viz. oestrogens and progestins, in aquatic ecosystems is of global concern due to their role as endocrine disrupting chemicals, even at low concentration (µg L-1 or less). Thus, it is essential to monitor these organic pollutants to get a realistic picture of their presence and to control their contamination levels in environmental water bodies. In this respect, we have explored the use of self-prepared polymeric films as novel sorptive phase for the microextraction of 17ß-estradiol, 17α-ethinylestradiol, estrone, progesterone, medroxyprogesterone acetate and hydroxyprogesterone. The thin film microextraction procedure has been developed, evaluating different film compositions, sample volumes and elution conditions to recover the sorbed analytes. The overall method provides good reproducibility (RSD < 12%) and recoveries higher than 60%. The final method has been applied to environmental monitoring in surface waters (river and lake samples) and urban wastewater treatment plant effluents and influents from Northern Italy, to get a contamination snapshot of this highly urbanized area.

16.
Methods Enzymol ; 701: 157-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025571

RESUMO

Molecular dynamics (MD) simulations are a useful tool when studying the properties of membranes as they allow for a molecular view of lipid interactions with proteins, nucleic acids, or small molecules. While model membranes are usually symmetric in their lipid composition between leaflets and include a small number of lipid components, physiological membranes are highly complex and vary in the level of asymmetry. Simulation studies have shown that changes in leaflet asymmetry can alter the properties of a membrane. It is therefore necessary to carefully build asymmetric membranes to accurately simulate membranes. This chapter carefully describes the different methods for building asymmetric membranes and the advantages/disadvantages of each method. The simplest methods involve building a membrane with either an equal number of lipids per leaflet or an equal initial surface area (SA) estimated by the area per lipid. More detailed methods include combining two symmetric membranes of equal SA or altering an asymmetric membrane and adjusting the number of lipids after equilibration to minimize an observable such as differential stress (0-DS). More complex methods that require specific simulation software are also briefly described. The challenges and assumptions are listed for each method which should help guide the researcher to choose the best method for their unique MD simulation of an asymmetric membrane.


Assuntos
Membrana Celular , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Software
17.
Methods Enzymol ; 701: 237-285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025573

RESUMO

The Martini model is a popular force field for coarse-grained simulations. Membranes have always been at the center of its development, with the latest version, Martini 3, showing great promise in capturing more and more realistic behavior. In this chapter we provide a step-by-step tutorial on how to construct starting configurations, run initial simulations and perform dedicated analysis for membrane-based systems of increasing complexity, including leaflet asymmetry, curvature gradients and embedding of membrane proteins.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Membrana Celular/química , Membrana Celular/metabolismo
18.
Methods Enzymol ; 701: 309-358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025575

RESUMO

Molecular dynamics (MD) simulations of symmetric lipid bilayers are now well established, while those of asymmetric ones are considerably less developed. This disjunction arises in part because the surface tensions of leaflets in asymmetric bilayers can differ (unlike those of symmetric ones), and there is no simple way to determine them without assumptions. This chapter describes the use of P21 periodic boundary conditions (PBC), which allow lipids to switch leaflets, to generate asymmetric bilayers under the assumption of equal chemical potentials of lipids in opposing leaflets. A series of examples, ranging from bilayers with one lipid type to those with peptides and proteins, provides a guide for the use of P21 PBC. Critical properties of asymmetric membranes, such as spontaneous curvature, are highly sensitive to differences in the leaflet surface tensions (or differential stress), and equilibration with P21 PBC substantially reduces differential stress of asymmetric bilayers assembled with surface area-based methods. Limitations of the method are discussed. Technically, the nonstandard unit cell is difficult to parallelize and to incorporate restraints. Inherently, the assumption of equal chemical potentials, and therefore the method itself, is not applicable to all target systems. Despite these limitations, it is argued that P21 simulations should be considered when designing equilibration protocols for MD studies of most asymmetric membranes.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Tensão Superficial
19.
Methods Enzymol ; 701: 457-514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025579

RESUMO

In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.


Assuntos
Proteínas de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Hidrodinâmica , Membrana Celular/química , Membrana Celular/metabolismo , Cinética , Simulação de Dinâmica Molecular , Viscosidade , Difusão , Bicamadas Lipídicas/química
20.
Int J Biol Macromol ; 276(Pt 2): 133966, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029828

RESUMO

Active packaging can efficiently enhance the shelf life of food, realizing the encapsulation and effective release of antibacterial agents and antioxidants. Zein is a natural protein derived from corn, widely used in food packaging. In this work, zein-based nanofiber membranes (NFMs) with beaded structures for food packaging were fabricated in batch using a self-made free surface electrospinning. The characteristics of NFMs were investigated in terms of their morphologies, structures and properties. The results illustrated that the antioxidant activity of NFMs was significantly improved after adding licorice extracts. Moreover, after adding the eugenol to the zein/licorice extract NFMs, zein/licorice extract/eugenol (ZLE) NFM had outstanding antibacterial activities against Staphylococcus aureus and Escherichia coli, which effectively prolonged the shelf-life of the grapes when it was used to package grapes. It proved that ZLE NFM had great potential in food packaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA