Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
BMC Genomics ; 25(1): 278, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486136

RESUMO

There is an ongoing process in which mitochondrial sequences are being integrated into the nuclear genome. The importance of these sequences has already been revealed in cancer biology, forensic, phylogenetic studies and in the evolution of the eukaryotic genetic information. Human and numerous model organisms' genomes were described from those sequences point of view. Furthermore, recent studies were published on the patterns of these nuclear localised mitochondrial sequences in different taxa.However, the results of the previously released studies are difficult to compare due to the lack of standardised methods and/or using few numbers of genomes. Therefore, in this paper our primary goal is to establish a uniform mining pipeline to explore these nuclear localised mitochondrial sequences.Our results show that the frequency of several repetitive elements is higher in the flanking regions of these sequences than expected. A machine learning model reveals that the flanking regions' repetitive elements and different structural characteristics are highly influential during the integration process.In this paper, we introduce a general mining pipeline for all mammalian genomes. The workflow is publicly available and is believed to serve as a validated baseline for future research in this field. We confirm the widespread opinion, on - as to our current knowledge - the largest dataset, that structural circumstances and events corresponding to repetitive elements are highly significant. An accurate model has also been trained to predict these sequences and their corresponding flanking regions.


Assuntos
Genoma Mitocondrial , Animais , Humanos , Filogenia , DNA Mitocondrial/genética , Mamíferos/genética , Sequências Repetitivas de Ácido Nucleico
2.
Int J Parasitol ; 54(5): 213-223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185351

RESUMO

The genomic evolution of Polyopisthocotylea remains poorly understood in comparison to the remaining three classes of Neodermata: Monopisthocotylea, Cestoda, and Trematoda. Moreover, the evolutionary sequence of major events in the phylogeny of Neodermata remains unresolved. Herein we sequenced the mitogenome and transcriptome of the polyopisthocotylean Diplorchis sp., and conducted comparative evolutionary analyses using nuclear (nDNA) and mitochondrial (mtDNA) genomic datasets of Neodermata. We found strong mitonuclear discordance in the phylogeny of Neodermata. Polyopisthocotylea exhibited striking mitonuclear discordance in relative evolutionary rates: the fastest-evolving mtDNA in Neodermata and a comparatively slowly-evolving nDNA genome. This was largely attributable to its very long stem branch in mtDNA topologies, not exhibited by the nDNA data. We found indications that the fast evolution of mitochondrial genomes of Polyopisthocotylea may be driven both by relaxed purifying selection pressures and elevated levels of directional selection. We identified mitochondria-associated genes encoded in the nuclear genome: they exhibited unique evolutionary rates, but not correlated with the evolutionary rate of mtDNA, and there is no evidence for compensatory evolution (they evolved slower than the rest of the genome). Finally, there appears to exist an exceptionally large (≈6.3 kb) nuclear mitochondrial DNA segment (numt) in the nuclear genome of newly sequenced Diplorchis sp. A 3'-end segment of the 16S rRNA gene encoded by the numt was expressed, suggesting that this gene acquired novel, regulatory functions after the transposition to the nuclear genome. In conclusion, Polyopisthocotylea appears to be the lineage with the fastest-evolving mtDNA sequences among all of Bilateria, but most of the substitutions were accumulated deep in the evolutionary history of this lineage. As the nuclear genome does not exhibit a similar pattern, the circumstances underpinning this evolutionary phenomenon remain a mystery.


Assuntos
Genoma Mitocondrial , Trematódeos , Animais , Filogenia , RNA Ribossômico 16S , Trematódeos/genética , DNA Mitocondrial/genética , Mitocôndrias/genética
3.
Mitochondrion ; 74: 101817, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914096

RESUMO

The resilience of the mitochondrial genome (mtDNA) to a high mutational pressure depends, in part, on negative purifying selection in the germline. A paradigm in the field has been that such selection, at least in part, takes place in primordial germ cells (PGCs). Specifically, Floros et al. (Nature Cell Biology 20: 144-51) reported an increase in the synonymity of mtDNA mutations (a sign of purifying selection) between early-stage and late-stage PGCs. We re-analyzed Floros' et al. data and determined that their mutational dataset was significantly contaminated with single nucleotide variants (SNVs) derived from a nuclear sequence of mtDNA origin (NUMT) located on chromosome 5. Contamination was caused by co-amplification of the NUMT sequence by cross-specific PCR primers. Importantly, when we removed NUMT-derived SNVs, the evidence of purifying selection was abolished. In addition to bulk PGCs, Floros et al. reported the analysis of single-cell late-stage PGCs, which were amplified with different sets of PCR primers that cannot amplify the NUMT sequence. Accordingly, there were no NUMT-derived SNVs among single PGC mutations. Interestingly, single PGC mutations show adecreaseof synonymity with increased intracellular mutant fraction. More specifically, nonsynonymous mutations show faster intracellular genetic drift towards higher mutant fraction than synonymous ones. This pattern is incompatible with predominantly negative selection. This suggests that germline selection of mtDNA mutations is a complex phenomenon and that the part of this process that takes place in PGCs may be predominantly positive. However counterintuitive, positive germline selection of detrimental mtDNA mutations has been reported previously andpotentially may be evolutionarily advantageous.


Assuntos
Genoma Mitocondrial , Células Germinativas , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mutação
4.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38124445

RESUMO

The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolution and chromosomal rearrangements over the past 200 million years. To address this issue, we systematically investigated the characteristics of NUMT insertions in 45 mammalian genomes and established a novel, synteny-based method to accurately predict orthologous NUMTs and ascertain their evolution across mammals. With a series of comparative analyses across taxa, we revealed that NUMTs may originate from nonrandom regions in mtDNA, are likely found in transposon-rich and intergenic regions, and unlikely code for functional proteins. Using our synteny-based approach, we leveraged 630 pairwise comparisons of genome-wide microsynteny and predicted the NUMT orthology relationships across 36 mammals. With the phylogenetic patterns of NUMT presence-and-absence across taxa, we constructed the ancestral state of NUMTs given the mammal tree using a coalescent method. We found support on the ancestral node of Fereuungulata within Laurasiatheria, whose subordinal relationships are still controversial. This study broadens our knowledge on NUMT insertion and evolution in mammalian genomes and highlights the merit of NUMTs as alternative genetic markers in phylogenetic inference.


Assuntos
Genoma Mitocondrial , Genômica , Animais , Filogenia , Mitocôndrias/genética , DNA Mitocondrial/genética , Mamíferos/genética , Análise de Sequência de DNA , Núcleo Celular/genética , Evolução Molecular
5.
Genes (Basel) ; 14(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38002932

RESUMO

The development of complete mitochondrial genome (mitogenome) reference data for inclusion in publicly available population databases is currently underway, and the generation of more high-quality mitogenomes will only enhance the statistical power of this forensically useful locus. To characterize mitogenome variation in Sweden, the mitochondrial DNA (mtDNA) reads from the SweGen whole genome sequencing (WGS) dataset were analyzed. To overcome the interference from low-frequency nuclear mtDNA segments (NUMTs), a 10% variant frequency threshold was applied for the analysis. In total, 934 forensic-quality mitogenome haplotypes were characterized. Almost 45% of the SweGen haplotypes belonged to haplogroup H. Nearly all mitogenome haplotypes (99.1%) were assigned to European haplogroups, which was expected based on previous mtDNA studies of the Swedish population. There were signature northern Swedish and Finnish haplogroups observed in the dataset (e.g., U5b1, W1a), consistent with the nuclear DNA analyses of the SweGen data. The complete mitogenome analysis resulted in high haplotype diversity (0.9996) with a random match probability of 0.15%. Overall, the SweGen mitogenomes provide a large mtDNA reference dataset for the Swedish population and also contribute to the effort to estimate global mitogenome haplotype frequencies.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Suécia , Análise de Sequência de DNA , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Mitocôndrias/genética
6.
Genome Biol Evol ; 15(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862134

RESUMO

The angiosperm genus Silene has been the subject of extensive study in the field of ecology and evolution, but the availability of high-quality reference genome sequences has been limited for this group. Here, we report a chromosome-level assembly for the genome of Silene conica based on Pacific Bioscience HiFi, Hi-C, and Bionano technologies. The assembly produced 10 scaffolds (1 per chromosome) with a total length of 862 Mb and only ∼1% gap content. These results confirm previous observations that S. conica and its relatives have a reduced base chromosome number relative to the genus's ancestral state of 12. Silene conica has an exceptionally large mitochondrial genome (>11 Mb), predominantly consisting of sequence of unknown origins. Analysis of shared sequence content suggests that it is unlikely that transfer of nuclear DNA is the primary driver of this mitochondrial genome expansion. More generally, this assembly should provide a valuable resource for future genomic studies in Silene, including comparative analyses with related species that recently evolved sex chromosomes.


Assuntos
Genoma Mitocondrial , Magnoliopsida , Silene , Silene/genética , Magnoliopsida/genética , Cromossomos , Cromossomos Sexuais
7.
Forensic Sci Int Genet ; 67: 102944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820546

RESUMO

Hair shed by domestic cats is a potentially useful source of forensic evidence. Analysable hair DNA is predominantly mitochondrial, but the recent domestication history of cats means that mtDNA diversity is low. A 402-bp control region segment is usually sequenced, defining only a small number of distinct haplotypes in populations. Previously, we used a long-amplicon approach to sequence whole mitogenomes in a sample of blood DNAs from 119 UK cats, greatly increasing observed diversity and reducing random match probabilities. To exploit this variation for forensic analysis, we here describe a multiplex system that amplifies the cat mitogenome in 60 overlapping amplicons of mean length 360 bp, followed by Nanopore sequencing. Variants detected in multiplex sequence data from unrooted hair completely mirror those from long-amplicon data from blood from the same individuals. However, applying the multiplex to matched blood DNA reveals additional sequence variants which derive from the major feline nuclear mitochondrial insertion sequence (numt), which covers 7.9 kb of the 17-kb mitogenome and exists in multiple tandem copies. We use long-amplicon Nanopore sequencing to investigate numt variation in a set of cats, together with an analysis of published genome sequences, and show that numt arrays are variable in both structure and sequence, thus providing a potential source of uncertainty when nuclear DNA predominates in a sample. Forensic application of the multiplex was demonstrated by matching hairs from a cat with skeletal remains from its putative mother, both of which shared a globally common haplotype at the control region. The random match probability in this case with the CR 402-bp segment was 0.21 and this decreased to 0.03 when considering the whole mitogenome. The developed multiplex and sequencing approach, when applied to cat hair where nuclear DNA is scarce, can provide a reliable and highly discriminating source of forensic genetic evidence from a single hair. The confounding effect of numt co-amplification in degraded samples where mixed sequences are observed can be mitigated by variant phasing, and by comparison with numt sequence diversity data, such as those presented here.


Assuntos
Genoma Mitocondrial , Sequenciamento por Nanoporos , Animais , Gatos/genética , Humanos , DNA Mitocondrial/genética , Medicina Legal , Análise de Sequência de DNA
8.
Mol Phylogenet Evol ; 181: 107722, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720422

RESUMO

Mito-nuclear insertions, or NUMTs, relate to genetic material of mitochondrial origin that have been transferred to the nuclear DNA molecule. The increasing amounts of genomic data currently being produced presents an opportunity to investigate this type of patterns in genome evolution of non-model organisms. Identifying NUMTs across a range of closely related taxa allows one to generalize patterns of insertion and maintenance in autosomes, which is ultimately relevant to the understanding of genome biology and evolution. Here we collected existing pairwise genome-mitogenome data of the order Strigiformes, a group that includes all the nocturnal bird predators. We identified NUMTs by applying percent similarity thresholds after blasting mitochondrial genomes against nuclear genome assemblies. We identified NUMTsin all genomes with numbers ranging from 4 in Bubo bubo to 24 in Ciccaba nigrolineata. Statistical analyses revealed NUMT size to negatively correlate with NUMT's sequence similarity to with original mtDNA region. Lastly, characterizing these nuclear insertions of mitochondrial origin in a comparative genomics framework produced variable phylogenetic patterns, suggesting in some cases that insertions might pre-date speciation events within Strigiformes.


Assuntos
Genoma Mitocondrial , Mitocôndrias , Animais , Filogenia , Mitocôndrias/genética , DNA Mitocondrial/genética , Aves/genética , Análise de Sequência de DNA , Núcleo Celular/genética
9.
Food Chem ; 402: 134250, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126583

RESUMO

Magnetic nanoparticles (MNPs) have a dual role in acting as magnetic and sonosensitizer agents, which can combine the synergistic effects of microwave and ultrasonic waves. To study the effects of MNPs combined ultrasonic-microwave thawing (NUMT) on the water holding capacity (WHC), oxidation of protein and lipid, and protein conformation, jumbo squid mantles were subjected to cold storage thawing (CST), MNPs combined ultrasonic thawing (NUT), MNPs combined microwave thawing (NMT) and NUMT. Results showed that NUMT treatment had a higher WHC, lower oxidation, effectively reduced myofibrillar protein aggregation and degradation, and stabilized the structure of the protein of the jumbo squid. The muscle fiber structure of NUMT treated jumbo squid mantles was dense, orderly with a smooth surface, and the fiber network gaps were small and uniformly distributed. This study shows that NUMT can ameliorate the thawing qualities of jumbo squid, and is an effectively thawing method.


Assuntos
Nanopartículas , Ultrassom , Animais , Ultrassom/métodos , Água/química , Micro-Ondas , Agregados Proteicos , Decapodiformes/química , Proteínas , Conformação Proteica , Fibras Musculares Esqueléticas , Lipídeos
10.
Front Genet ; 13: 984513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36482890

RESUMO

The integration of mitochondrial genome fragments into the nuclear genome is well documented, and the transfer of these mitochondrial nuclear pseudogenes (numts) is thought to be an ongoing evolutionary process. With the increasing number of eukaryotic genomes available, genome-wide distributions of numts are often surveyed. However, inconsistencies in genome quality can reduce the accuracy of numt estimates, and methods used for identification can be complicated by the diverse sizes and ages of numts. Numts have been previously characterized in rodent genomes and it was postulated that they might be more prevalent in a group of voles with rapidly evolving karyotypes. Here, we examine 37 rodent genomes, and an additional 26 vertebrate genomes, while also considering numt detection methods. We identify numts using DNA:DNA and protein:translated-DNA similarity searches and compare numt distributions among rodent and vertebrate taxa to assess whether some groups are more susceptible to transfer. A combination of protein sequence comparisons (protein:translated-DNA) and BLASTN genomic DNA searches detect 50% more numts than genomic DNA:DNA searches alone. In addition, higher-quality RefSeq genomes produce lower estimates of numts than GenBank genomes, suggesting that lower quality genome assemblies can overestimate numts abundance. Phylogenetic analysis shows that mitochondrial transfers are not associated with karyotypic diversity among rodents. Surprisingly, we did not find a strong correlation between numt counts and genome size. Estimates using DNA: DNA analyses can underestimate the amount of mitochondrial DNA that is transferred to the nucleus.

11.
Mitochondrion ; 66: 1-6, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35842180

RESUMO

Numtogenesis is observable in the mammalian genomes resulting in the integration of mitochondrial segments into the nuclear genomes (numts). To identify numts in rabbit, we aligned mitochondrial and nuclear genomes. Alignment significance threshold was calculated and individual characteristics of numts were analysed. We found 153 numts in the nuclear genome. The GC content of numts were significantly lower than the GC content of their genomic flanking regions or the genome itself. The frequency of three mammalian-wide interspersed repeats were increased in the proximity of numts. The decreased GC content around numts strengthen the theory which supposes a link between DNA structural instability and numt integration.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Animais , Núcleo Celular/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Genoma , Mamíferos/genética , Mitocôndrias/genética , Filogenia , Coelhos , Análise de Sequência de DNA
12.
Mol Ecol Resour ; 22(8): 2967-2980, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35757869

RESUMO

DNA barcoding and metabarcoding have been increasingly used in species delimitation and species diversity assessment, respectively, and the molecular markers used in animals are mainly derived from mitochondrial DNA. It is well known that the phenomenon of multiple mitochondrial haplotypes within the same specimen (hereafter referred to as "mitotype diversity") may have a negative impact on the proper assessment of biodiversity by metabarcoding. However, few studies have focused on the incidence of this phenomenon and its effects on metabarcoding results using different sample preparation strategies, such as mock community construction using pooled high-throughput sequencing (HTS) data, DNA-pooling and Tissue-pooling. In this study, we investigated mitotype diversity and its influence on metabarcoding based on 398 specimens from 66 species of Insecta and 82 specimens from 16 species of Arachnida by HTS of the mitochondrial cox1 gene fragment. The results revealed that mitotype diversity was common in the studied taxa and significantly increased the number of operational taxonomic units (OTUs) using the three sample preparation strategies. The results also showed that the bioinformatics pipeline based on authentic amplicon sequence variants was more reliable than the pipeline based on OTUs. Regarding the sample preparation strategies of DNA-pooling and Tissue-pooling commonly used in metabarcoding, our results revealed that their results of metabarcoding were quite similar, and the Tissue-pooling strategy was therefore preferred because of its simplicity. Our study calls for additional attention to the interference of mitotype diversity on the results of DNA metabarcoding in biodiversity assessment.


Assuntos
Aracnídeos , Código de Barras de DNA Taxonômico , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Mitocondrial/genética , Insetos/genética
13.
Genes (Basel) ; 13(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35741785

RESUMO

mtDNA sequences can be incorporated into the nuclear genome and produce nuclear mitochondrial fragments (NUMTs), which resemble mtDNA in their sequence but are transmitted biparentally, like the nuclear genome. NUMTs can be mistaken as real mtDNA and may lead to the erroneous impression that mtDNA is biparentally transmitted. Here, we report a case of mtDNA heteroplasmy in a Drosophila melanogaster DGRP line, in which the one haplotype was biparentally transmitted in an autosomal manner. Given the sequence identity of this haplotype with the mtDNA, the crossing experiments led to uncertainty about whether heteroplasmy was real or an artifact due to a NUMT. More specific experiments revealed that there is a large NUMT insertion in the X chromosome of a specific DGRP line, imitating biparental inheritance of mtDNA. Our result suggests that studies on mtDNA heteroplasmy and on mtDNA inheritance should first exclude the possibility of NUMT interference in their data.


Assuntos
DNA Mitocondrial , Drosophila melanogaster , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Drosophila melanogaster/genética , Mitocôndrias/genética , Análise de Sequência de DNA
14.
J Hered ; 113(2): 171-183, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575078

RESUMO

Mitochondria are assumed to be maternally inherited in most animal species, and this foundational concept has fostered advances in phylogenetics, conservation, and population genetics. Like other animals, mitochondria were thought to be solely maternally inherited in the marine copepod Tigriopus californicus, which has served as a useful model for studying mitonuclear interactions, hybrid breakdown, and environmental tolerance. However, we present PCR, Sanger sequencing, and Illumina Nextera sequencing evidence that extensive paternal mitochondrial DNA (mtDNA) transmission is occurring in inter-population hybrids of T. californicus. PCR on four types of crosses between three populations (total sample size of 376 F1 individuals) with 20% genome-wide mitochondrial divergence showed 2% to 59% of F1 hybrids with both paternal and maternal mtDNA, where low and high paternal leakage values were found in different cross directions of the same population pairs. Sequencing methods further verified nucleotide similarities between F1 mtDNA and paternal mtDNA sequences. Interestingly, the paternal mtDNA in F1s from some crosses inherited haplotypes that were uncommon in the paternal population. Compared to some previous research on paternal leakage, we employed more rigorous methods to rule out contamination and false detection of paternal mtDNA due to non-functional nuclear mitochondrial DNA fragments. Our results raise the potential that other animal systems thought to only inherit maternal mitochondria may also have paternal leakage, which would then affect the interpretation of past and future population genetics or phylogenetic studies that rely on mitochondria as uniparental markers.


Assuntos
Copépodes , Animais , Copépodes/genética , DNA Mitocondrial/genética , Genes Mitocondriais , Haplótipos , Mitocôndrias/genética , Filogenia
15.
Genes (Basel) ; 13(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35627195

RESUMO

The hypothesis that the evolution of humans involves hybridization between diverged species has been actively debated in recent years. We present the following novel evidence in support of this hypothesis: the analysis of nuclear pseudogenes of mtDNA ("NUMTs"). NUMTs are considered "mtDNA fossils" as they preserve sequences of ancient mtDNA and thus carry unique information about ancestral populations. Our comparison of a NUMT sequence shared by humans, chimpanzees, and gorillas with their mtDNAs implies that, around the time of divergence between humans and chimpanzees, our evolutionary history involved the interbreeding of individuals whose mtDNA had diverged as much as ~4.5 Myr prior. This large divergence suggests a distant interspecies hybridization. Additionally, analysis of two other NUMTs suggests that such events occur repeatedly. Our findings suggest a complex pattern of speciation in primate/human ancestors and provide one potential explanation for the mosaic nature of fossil morphology found at the emergence of the hominin lineage. A preliminary version of this manuscript was uploaded to the preprint server BioRxiv in 2017 (10.1101/134502).


Assuntos
Hominidae , Pseudogenes , Animais , DNA Mitocondrial/genética , Evolução Molecular , Hominidae/genética , Humanos , Hibridização Genética , Mitocôndrias/genética , Pseudogenes/genética
16.
Genome Biol Evol ; 14(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35446419

RESUMO

Intracellular transfers of mitochondrial DNA continue to shape nuclear genomes. Chromosome 2 of the model plant Arabidopsis thaliana contains one of the largest known nuclear insertions of mitochondrial DNA (numts). Estimated at over 600 kb in size, this numt is larger than the entire Arabidopsis mitochondrial genome. The primary Arabidopsis nuclear reference genome contains less than half of the numt because of its structural complexity and repetitiveness. Recent data sets generated with improved long-read sequencing technologies (PacBio HiFi) provide an opportunity to finally determine the accurate sequence and structure of this numt. We performed a de novo assembly using sequencing data from recent initiatives to span the Arabidopsis centromeres, producing a gap-free sequence of the Chromosome 2 numt, which is 641 kb in length and has 99.933% nucleotide sequence identity with the actual mitochondrial genome. The numt assembly is consistent with the repetitive structure previously predicted from fiber-based fluorescent in situ hybridization. Nanopore sequencing data indicate that the numt has high levels of cytosine methylation, helping to explain its biased spectrum of nucleotide sequence divergence and supporting previous inferences that it is transcriptionally inactive. The original numt insertion appears to have involved multiple mitochondrial DNA copies with alternative structures that subsequently underwent an additional duplication event within the nuclear genome. This work provides insights into numt evolution, addresses one of the last unresolved regions of the Arabidopsis reference genome, and represents a resource for distinguishing between highly similar numt and mitochondrial sequences in studies of transcription, epigenetic modifications, and de novo mutations.


Assuntos
Arabidopsis , Genoma Mitocondrial , Arabidopsis/genética , Núcleo Celular/genética , DNA Mitocondrial/genética , Hibridização in Situ Fluorescente , Mitocôndrias/genética , Análise de Sequência de DNA
17.
Mol Ecol Resour ; 22(2): 638-652, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34555254

RESUMO

DNA metabarcoding is a rapid, high-resolution tool used for biomonitoring complex zooplankton communities. However, diversity estimates derived with this approach can be biased by the co-detection of sequences from environmental DNA (eDNA), nuclear-encoded mitochondrial (NUMT) pseudogene contamination, and taxon-specific PCR primer affinity differences. To avoid these methodological uncertainties, we tested the use of metatranscriptomics as an alternative approach for characterizing zooplankton communities. Specifically, we compared metatranscriptomics with PCR-based methods using genomic (gDNA) and complementary DNA (cDNA) amplicons, and morphology-based data for estimating species diversity and composition for both mock communities and field-collected samples. Mock community analyses showed that the use of gDNA mitochondrial cytochrome c oxidase I (mtCO1) amplicons inflates species richness due to the co-detection of extra-organismal eDNA. Significantly more amplicon sequence variants, nucleotide diversity, and indels were observed with gDNA amplicons than with cDNA, indicating the presence of putative NUMT pseudogenes. Moreover, PCR-based methods failed to detect the most abundant species in mock communities due to priming site mismatch. Overall, metatranscriptomics provided estimates of species richness and composition that closely resembled those derived from morphological data. The use of metatranscriptomics was further tested using field-collected samples, with the results showing consistent species diversity estimates among biological and technical replicates. Additionally, temporal zooplankton species composition changes could be monitored using different mitochondrial markers. These findings demonstrate the advantages of metatranscriptomics as an effective tool for monitoring diversity in zooplankton research.


Assuntos
DNA Ambiental , Zooplâncton , Animais , Código de Barras de DNA Taxonômico , Reação em Cadeia da Polimerase , Zooplâncton/genética
18.
Insects ; 12(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34821764

RESUMO

In eukaryotes, DNA of mitochondria is transferred into the nucleus and forms nuclear mitochondrial DNAs (NUMTs). Taking advantage of the abundant genomic resources for bumblebees, in this study, we de novo generated mitochondrial genomes (mitogenomes) for 11 bumblebee species. Then, we identified and characterized NUMTs in genus-wide bumblebee species. The number of identified NUMTs varies across those species, with numbers ranging from 32 to 72, and nuclear genome size is not positively related to NUMT number. The insertion sites of NUMTs in the nuclear genome are not random, with AT-rich regions harboring more NUMTs. In addition, our results suggest that NUMTs derived from the mitochondrial COX1 gene are most abundant in the bumblebee nuclear genome. Although the majority of NUMTs are found within intergenic regions, some NUMTs do reside within genic regions. Transcripts that contain both the NUMT sequence and its flanking non-NUMT sequences could be found in the bumblebee transcriptome, suggesting a potential domestication of NUMTs in the bumblebee. Taken together, our results shed light on the molecular features of NUMTs in the bumblebee and uncover their contribution to genome innovation.

19.
BMC Bioinformatics ; 22(1): 256, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011275

RESUMO

BACKGROUND: Pseudogenes are non-functional copies of protein coding genes that typically follow a different molecular evolutionary path as compared to functional genes. The inclusion of pseudogene sequences in DNA barcoding and metabarcoding analysis can lead to misleading results. None of the most widely used bioinformatic pipelines used to process marker gene (metabarcode) high throughput sequencing data specifically accounts for the presence of pseudogenes in protein-coding marker genes. The purpose of this study is to develop a method to screen for nuclear mitochondrial DNA segments (nuMTs) in large COI datasets. We do this by: (1) describing gene and nuMT characteristics from an artificial COI barcode dataset, (2) show the impact of two different pseudogene removal methods on perturbed community datasets with simulated nuMTs, and (3) incorporate a pseudogene filtering step in a bioinformatic pipeline that can be used to process Illumina paired-end COI metabarcode sequences. Open reading frame length and sequence bit scores from hidden Markov model (HMM) profile analysis were used to detect pseudogenes. RESULTS: Our simulations showed that it was more difficult to identify nuMTs from shorter amplicon sequences such as those typically used in metabarcoding compared with full length DNA barcodes that are used in the construction of barcode libraries. It was also more difficult to identify nuMTs in datasets where there is a high percentage of nuMTs. Existing bioinformatic pipelines used to process metabarcode sequences already remove some nuMTs, especially in the rare sequence removal step, but the addition of a pseudogene filtering step can remove up to 5% of sequences even when other filtering steps are in place. CONCLUSIONS: Open reading frame length filtering alone or combined with hidden Markov model profile analysis can be used to effectively screen out apparent pseudogenes from large datasets. There is more to learn from COI nuMTs such as their frequency in DNA barcoding and metabarcoding studies, their taxonomic distribution, and evolution. Thus, we encourage the submission of verified COI nuMTs to public databases to facilitate future studies.


Assuntos
Código de Barras de DNA Taxonômico , Pseudogenes , Núcleo Celular , DNA Mitocondrial , Mitocôndrias/genética , Filogenia , Pseudogenes/genética , Análise de Sequência de DNA
20.
Ann Biol Clin (Paris) ; 79(1): 28-40, 2021 Feb 01.
Artigo em Francês | MEDLINE | ID: mdl-33586649

RESUMO

The molecular study of mitochondrial diseases, essential for diagnosis, is special due to the dual genetic origin of these pathologies: mitochondrial DNA and nuclear DNA. Complete mtDNA sequencing still remains the first line diagnostic test followed if negative, by resequencing panels of several hundred mitochondrially-encoded nuclear genes. This strategy, with an initial entire mtDNA sequencing, is currently justified by the presence of nuclear mitochondrial DNA sequences (NUMTs) in the nuclear genome. We designed a resequencing panel combining the mtDNA and 135 nuclear genes which was evaluated compared to the performances of the standard mtDNA sequencing. Method validation was performed on the reading depth and reproducibility of the results. Thirty patients were analyzed by both methods. We were able to demonstrate that NUMTs did not impact the mtDNA sequencing quality, as the identified variants and mutant loads were identical with the reference mtDNA sequencing method. Reading depths were higher than the recommendations of the MitoDiag French diagnostic network, for the entire mtDNA for muscle and for 70% of the mtDNA for blood. These results highlight the usefulness of combining both mtDNA and mitochondrially nuclear-encoded genes and thus obtain more complete results and faster turnaround time for mitochondrial disease patients.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Humanos , Mitocôndrias , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA