RESUMO
Based on compelling preclinical evidence concerning the progress of our novel ruthenium-based metallotherapeutics, we are focusing research efforts on challenging indications for the treatment of invasive neoplasms such as the triple-negative breast cancer (TNBC). This malignancy mainly afflicts younger women, who are black, or who have a BRCA1 mutation. Because of faster growing and spreading, TNBC differs from other invasive breast cancers having fewer treatment options and worse prognosis, where existing therapies are mostly ineffective, resulting in a large unmet biomedical need. In this context, we benefited from an experimental model of TNBC both in vitro and in vivo to explore the effects of a biocompatible cationic liposomal nanoformulation, named HoThyRu/DOTAP, able to effectively deliver the antiproliferative ruthenium(III) complex AziRu, thus resulting in a prospective candidate drug. As part of the multitargeting mechanisms featuring metal-based therapeutics other than platinum-containing agents, we herein validate the potential of HoThyRu/DOTAP liposomes to act as a multimodal anticancer agent through inhibition of TNBC cell growth and proliferation, as well as migration and invasion. The here-obtained preclinical findings suggest a potential targeting of the complex pathways network controlling invasive and migratory cancer phenotypes. Overall, in the field of alternative chemotherapy to platinum-based drugs, these outcomes suggest prospective brand-new settings for the nanostructured AziRu complex to get promising goals for the treatment of metastatic TNBC.
Assuntos
Antineoplásicos , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Rutênio/farmacologia , Rutênio/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácidos Graxos Monoinsaturados , Lipossomos/uso terapêutico , Linhagem Celular TumoralRESUMO
Antibiotic resistance has become a major issue in the global healthcare system, notably in the case of Gram-negative bacteria. Recent advances in technology with oligonucleotides have an enormous potential for tackling this problem, providing their efficient intrabacterial delivery. The current work aimed to apply this strategy by using a novel nanoformulation consisting of DOTAU, a nucleolipid carrier, in an attempt to simultaneously deliver antibiotic and anti-resistance oligonucleotides. Ceftriaxone, a third-generation cephalosporin, was formulated with DOTAU to form an ion pair, and was then nanoprecipitated. The obtained solid nanocapsules were characterized using FT-IR, XRD, HPLC, TEM and DLS techniques and further functionalized by the anti-resistance ONα sequence. To obtain an optimal anti-resistance activity and encapsulation yield, both the formulation protocol and the concentration of ONα were optimized. As a result, monodispersed negatively charged nanoparticles of CFX-DOTAU-ONα with a molar ratio of 10:24:1 were obtained. The minimum inhibitory concentration of these nanoparticles on the resistant Escherichia coli strain was significantly reduced (by 75%) in comparison with that of non-vectorized ONα. All aforementioned results reveal that our nanoformulation can be considered as an efficient and relevant strategy for oligonucleotide intrabacterial delivery in the fight against antibiotic resistance.
RESUMO
Increasing evidence suggests that lysosomal dysfunction has a pathogenic role in neurodegenerative diseases. In particular, an increase in lysosomal pH has been reported in different cellular models of Parkinson's disease. Thus, targeting lysosomes has emerged as a promising approach. More specifically, regulating its pH could play a central role against the neurodegeneration process. To date, only a few agents specifically targeting lysosomal pH are reported in the literature, partly due to the challenge of crossing the Blood-Brain-Barrier (BBB), preventing drug penetration into the central nervous system (CNS). To develop chronic treatments for neurodegenerative diseases, crossing the BBB is crucial. We report herein the conception and synthesis of an innovative DNA derivative-based nanocarrier. Nucleolipids, carrying a biocompatible organic acid as an active ingredient, were designed and synthesized as prodrugs. They were successfully incorporated into an oil-in-water nanoemulsion vehicle to cross biological membranes and then release effectively biocompatible acidic components to restore the functional lysosomal pH of neuronal cells. Biological assays on a genetic cell model of Parkinson's disease highlighted the non-toxicity of such nucleolipids after cellular uptake and their ability (at c = 40 µM) to fully restore lysosomal acidity.
RESUMO
Heat shock protein 27 (Hsp27) has an established role in tumor progression and chemo-resistance of castration-resistant prostate cancer (CRPC). Hsp27 protects eukaryotic translation initiation factor 4E (eIF4E) from degradation, thereby maintaining survival during treatment. Phenazine derivative compound #14 was demonstrated to specifically disrupt Hsp27/eIF4E interaction and significantly delay castration-resistant tumor progression in prostate cancer xenografts. In the present work, various strategies of encapsulation of phenazine #14 with either DOTAU (N-[5'-(2',3'-dioleoyl)uridine]-N',N',N'-trimethylammonium tosylate) and DOU-PEG2000 (5'-PEG2000-2',3'-dioleoyluridine) nucleolipids (NLs) were developed in order to improve its solubilization, biological activity, and bioavailability. We observed that NLs-encapsulated phenazine #14-driven Hsp27-eIF4E interaction disruption increased cytotoxic effects on castration-resistant prostate cancer cell line and inhibited tumor growth in castration-resistant prostate cancer cell xenografted mice compared to phenazine #14 and NLs alone. Phenazine #14 NL encapsulation might represent an interesting nanostrategy for CRPC therapy.
RESUMO
A hybrid bilayer lipid membrane (hBLM), constructed with a 1-hexadecanethiol self-assembled interior leaflet and a 1,2-dipalmitoyl-sn-glycero-3-cytidine nucleolipid exterior leaflet, was deposited at the surface of a gold (111) electrode. This system was used to investigate the molecular recognition reaction between the cytosine moieties of the lipid head group with guanine molecules in the bulk electrolyte solution. Electrochemical measurements and photon polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) were employed to characterize the system and determine the extent of the molecular recognition reaction. The capacitance of the hBLM-covered gold electrode was very low (~1 µF cm-2), therefore the charge density at the gold surface was small. Changing the electrode potential had a minimal effect on the complexation between the cytosine moieties and guanine molecules due to small changes in the static electric field across the membrane. This behavior favored the formation of the guanine-cytosine complex.
Assuntos
Citosina/química , Eletrodos , Ouro/química , Guanina/química , Bicamadas Lipídicas/química , Espectrofotometria InfravermelhoRESUMO
With the rapid development of synthetic technology and biological technology, many nucleic acid-based drugs have entered the clinical trials. However, their inherent disabilities in actively and efficiently penetrating cell membranes still severely restrict their further application. The main drawback of cationic lipids, which have been widely used as nonviral vectors of nucleic acids, is their high cytotoxicity. A series of nucleoside-based or nucleotide-based nucleolipids have been reported in recent years, due to their oligonucleotide delivery capacity and low toxicity in comparison with cationic lipids. Lipophilic prodrugs of nucleoside analogs have extremely similar structures with nucleolipid vectors and are thus helpful for improving the transmembrane ability. This review introduces the progress of nucleolipids and provides new strategies for improving the delivery efficiency of nucleic acid-based drugs, as well as lipophilic prodrugs of nucleosides or nucleotides for antiviral or anticancer therapies.
Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos/química , Nucleosídeos/administração & dosagem , Oligonucleotídeos/administração & dosagem , Animais , Aprovação de Drogas , Humanos , Nanopartículas/química , Nucleosídeos/química , Oligonucleotídeos/químicaRESUMO
Despite being in routine for onco-diagnostics for years, the applicability of nucleosidic molecular imaging probes is severely restricted in neurological applications due to their low permeability across blood-brain-barrier (BBB). For extending nucleoside tracers utility for neuro-onco early diagnostics, suitable modification which enhances their BBB permeation needs investigation. Among various modifications, lipidization of nucleosides has been reported to enhance cellular permeability. Extending the concept, the aim was to exemplify the possibility of lipidized nucleosides as potential brain tracer with capability to cross intact BBB and evaluate as metal based neuro-imaging SPECT agent. Uridine based non-lipidic (NSDAU) and di-C15-ketal appended lipidic (NLDPU) ligands were conjugated to chelator, DTPA (DTPA-NSDAU and DTPA-NLDPU) using multi-step chemistry. The ligands were evaluated in parallel for comparative physical and biological parameters. Additionally, effects of enhanced lipophilicity on UV-absorption, acid strength, fluorescence and non-specific protein binding were evaluated. Fluorescence quenching of BSA indicated appreciable interaction of DTPA-NLDPU with protein only above 10â¯mM without inducing conformational changes. In addition, DTPA-NLDPU was found to be haematocompatible and cytocompatible with low dose-dependent toxicity in HEK-cells. The chelator DTPA was used for 99mTc-complexation for SPECT imaging. Optimized 99mTc-radiolabeling parameters resulted in quantitative (≥97%) labeling with good stability parameters in in-vitro serum and cysteine challenge studies. We demonstrate that the nucleolipid radiotracer (99mTc-DTPA-NLDPU) was successfully able to permeate the BBB with brain uptake of 0.2% ID/g in normal mice as compared to 0.06% ID/g uptake of 99mTc-DTPA-NSDAU at 5â¯min. Blood kinetics indicate biphasic profile and t1/2(distribution) 46â¯min for 99mTc-DTPA-NLDPU. The preferential accumulation of 99mTc-DTPA-NLDPU in brain tumor intracranial xenograft indicate the targeting capability of the nucleoside. We conclude that as first-of-its-kind, this work presents the potential of the biocompatible nucleolipidic system for brain targeting and early diagnostics.
Assuntos
Barreira Hematoencefálica/metabolismo , Hidrocarbonetos/administração & dosagem , Cetonas/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Pentetato de Tecnécio Tc 99m/administração & dosagem , Uridina/administração & dosagem , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Hidrocarbonetos/farmacocinética , Cetonas/farmacocinética , Camundongos Endogâmicos BALB C , Permeabilidade , Coelhos , Compostos Radiofarmacêuticos/farmacocinética , Pentetato de Tecnécio Tc 99m/farmacocinética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Uridina/farmacocinéticaRESUMO
Adenosine is a fascinating compound, crucial in many biochemical processes: this ubiquitous nucleoside serves as an essential building block of RNA, is also a component of ATP and regulates numerous pathophysiological mechanisms via binding to four extracellular receptors. Due to its hydrophilic nature, it belongs to a different world than lipids, and has no affinity for them. Since the 1970's, however, new discoveries have emerged and prompted the scientific community to associate adenosine with the lipid family, especially via liposomal preparations and bioconjugation. This seems to be an arranged marriage, but could it turn into a true love match? This review considered all types of unions established between adenosine and lipids. Even though exciting supramolecular structures were observed with adenosine-lipid conjugates, as well as with liposomal preparations which resulted in promising pre-clinical results, the translation of these technologies to the clinic is still limited.
Assuntos
Adenosina/química , Lipídeos/química , Adenosina/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Lipossomos/metabolismoRESUMO
Monolayers of a cytosine-based nucleolipid (1,2-dipalmitoyl-sn-glycero-3-(cytidine diphosphate) (ammonium salt), CDP-DG) at basic subphase have been prepared at the air-water interface both in absence and presence of guanine. The formation of the complementary base pairing is demonstrated by combining surface experimental techniques, i.e., surface pressure (π)-area (A), Brewster angle microscopy (BAM), infrared spectroscopy (PM-IRRAS) and computer simulations. A folding of the cytosine-based nucleolipid molecules forming monolayer at the air-water interface occurs during the guanine recognition as absorbate host and is kept during several compression-expansion processes under set experimental conditions. The specificity between nitrogenous bases has been also registered. Finally, mixed monolayers of CDP-DG and a phospholipid (1,2-dimyristoyl-sn-glycero-3-phosphate (sodium salt), DMPA) has been studied and a molecular segregation of the DMPA molecules has been inferred by the additivity rule.
Assuntos
Ar , Citosina/química , Guanina/química , Lipídeos/química , Água/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Tamanho da Partícula , Pressão , Propriedades de SuperfícieRESUMO
In the search for more potent peptide-based anti-cancer conjugates the generation of new, functionally diverse nucleolipid derived D-(KLAKLAK)2-AK sequences has enabled a structure and anti-cancer activity relationship study. A reductive amination approach was key for the synthesis of alkylamine, diamine and polyamine derived nucleolipids as well as those incorporating heterocyclic functionality. The carboxy-derived nucleolipids were then coupled to the C-terminus of the D-(KLAKLAK)2-AK killer peptide sequence and produced with and without the FITC fluorophore for investigating biological activity in cancer cells. The amphiphilic, α-helical peptide-nucleolipid bioconjugates were found to exhibit variable effects on the viability of MM.1S cells, with the histamine derived nucleolipid peptide bioconjugate displaying the most significant anti-cancer effects. Thus, functionally diverse nucleolipids have been developed to fine-tune the structure and anti-cancer properties of killer peptide sequences, such as D-(KLAKLAK)2-AK.
Assuntos
Antineoplásicos/farmacologia , Lipídeos/farmacologia , Peptídeos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipídeos/química , Estrutura Molecular , Peptídeos/química , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/química , Tensoativos/farmacologia , Células Tumorais CultivadasRESUMO
The synthesis, characterization and anti-cancer activity of a novel peptide nucleolipid bioconjugate is reported in this study. The prerequisite 5'-carboxy derived nucleolipid was synthesized following a five-step solution-phase approach and then coupled to the cytotoxic D-(KLAKLAK)2 sequence by solid-phase bioconjugation. The biophysical and structural properties of the peptide-nucleolipid bioconjugate were evaluated and compared to the peptide controls. These characterization studies revealed that the amphiphilic peptides favored helical-type secondary structures and well-defined nanoparticle formulations that were found to be contributive towards their biological activity. The peptide-nucleolipid bioconjugate displayed greater lethality in comparison to the native D-(KLAKLAK)2AK sequence when treated within the human A549 non-small cell lung carcinoma cell line. Thus, the amphiphilic peptide-nucleolipid forms a new class of anti-cancer peptides that may be developed into promising leads in the fight against cancer.
Assuntos
Antineoplásicos/farmacologia , Lipídeos/farmacologia , Peptídeos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipídeos/química , Estrutura Molecular , Peptídeos/química , Relação Estrutura-AtividadeRESUMO
A new bolaamphiphile analog featuring carbamate moieties was synthesized in six steps starting from thymidine. The amphiphile structure exhibits nucleoside-sugar polar heads attached to a hydrophobic spacer via carbamate (urethane) functions. This molecular structure, which possesses additional H-bonding capabilities, induces the stabilization of low-molecular-weight gels (LMWGs) in water. The rheological studies revealed that the new bolaamphiphile 7 stabilizes thixotropic hydrogels with a high elastic modulus (G' > 50 kPa).
RESUMO
Hydrophobic organic compounds dissolved in a polar solvent can self-assemble into nanoparticles (NPs) upon nanoprecipitation into water. In the present study, we have investigated the structure of squalenacetyl-adenosine (SQAc-Ad) nanoparticles which were previously found to exhibit impressive neuroprotective activity. When obtained by nanoprecipitation of a SQAc-Ad ethanolic solution into water, two different supramolecular organizations of SQAc-Ad NPs were evidenced, depending on the water-to-ethanol volume ratio. It has been shown that a fraction of the solvent remained associated with the NPs, despite prolonged evaporation under reduced pressure after nanoprecipitation, and that this residual solvent dramatically affected their structure. This study points to the importance of being in the "Ouzo" region to minimize the amount and effect of residual solvent and to control the structure of NPs.
Assuntos
Adenosina/análogos & derivados , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Nanopartículas/química , Fármacos Neuroprotetores/química , Esqualeno/análogos & derivados , Adenosina/administração & dosagem , Adenosina/química , Precipitação Química , Química Farmacêutica , Etanol/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Fármacos Neuroprotetores/administração & dosagem , Tamanho da Partícula , Soluções , Solventes/química , Esqualeno/administração & dosagem , Esqualeno/química , Água/químicaRESUMO
BACKGROUND: Fatty acid vesicles are an important part of protocell models currently studied. As protocells can be considered as pre-biological precursors of cells, the models try to contribute to a better understanding of the (cellular) origin of life and emphasize on 2 major aspects: compartmentalization and replication. It has been demonstrated that lipid-based membranes are amenable to growth and division (shell replication). Furthermore compartmentalization creates a unique micro-environment in which biomolecules can accumulate and reactions can occur. Pioneering research by Sugawara, Deamer, Luisi, Szostak and Rasmussen gave more insight in obtaining autocatalytic, self-replicating vesicles capable of containing and reproducing nucleic acid sequences (core replication). Linking both core and shell replication is a challenging feat requiring thorough understanding of membrane dynamics and (auto)catalytic systems. A possible solution may lie in a class of compounds called nucleolipids, who combine a nucleoside, nucleotide or nucleobase with a lipophilic moiety. Early contributions by the group of Yanagawa mentions the prebiotic significance (as a primitive helical template) arising from the supramolecular organization of these compounds. Further contributions, exploring the supramolecular scope regarding phospoliponucleosides (e.g. 5'-dioleylphosphatidyl derivatives of adenosine, uridine and cytidine) can be accounted to Baglioni, Luisi and Berti. This emerging field of amphiphiles is being investigated for surface behavior, supramolecular assembly and even drug ability. RESULTS: A series of α/ß-hydroxy fatty acids and α-amino fatty acids, covalently bound to nucleoside-5'-monophosphates via a hydroxyl or amino group on the fatty acid was examined for spontaneous self-assembly in spherical aggregates and their stability towards intramolecular cleavage. Staining the resulting hydrophobic aggregates with BODIPY-dyes followed by fluorescent microscopy gave several distinct images of vesicles varying from small, isolated spheres to higher order aggregates and large, multimicrometer sized particles. Other observations include rod-like vesicle precursors. NMR was used to assess the stability of a representative sample of nucleolipids. 1D 31P NMR revealed that ß-hydroxy fatty acids containing nucleotides were pH-stable while the α-analogs are acid labile. Degradation products identified by [1H-31P] heteroTOCSY revealed that phosphoesters are cleaved between sugar and phosphate, while phosphoramidates are also cleaved at the lipid-phosphate bond. For the latter compounds, the ratio between both degradation pathways is influenced by the nucleobase moiety. However no oligomerization of nucleotides was observed; nor the formation of 3'-5'-cyclic nucleotides, possible intermediates for oligonucleotide synthesis. CONCLUSIONS: The nucleolipids with a deoxyribose sugar moiety form small or large vesicles, rod-like structures, vesicle aggregates or large vesicles. Some of these aggregates can be considered as intermediate forms in vesicle formation or division. However, we could not observe nucleotide polymerization or cyclic nucleotide function of these nucleolipids, regardless of the sugar moiety that is investigated (deoxyribose, ribose, xylose). To unravel this observation, the chemical stability of the constructs was studied. While the nucleolipids containing ß-hydroxy fatty acids are stable as well in base as in acid circumstances, others degraded in acidic conditions. Phosphoramidate nucleolipids hydrolyzed by P-N as well as P-O bond cleavage where the ratio between both pathways depends on the nucleobase. Diester constructs with an α-hydroxy stearic acid degraded exclusively by hydrolysis of the 5'-O-nucleoside ester bond. As the compounds are too stable and harsh conditions would destruct the material itself, more reactive species such as lipid imidazolates of nucleotides need to be synthesized to further analyze the potential polymerization process. Graphical AbstractVesicle information of a nucleolipid consisting of a nucleoside 5'-monophosphate and a α-hydroxy fatty acid.
RESUMO
The synthesis and characterization of a new class of DNA binding molecule exhibiting potent and selective anti-leukemic activity is described. The synthesis of an aminoacyl nucleolipid was developed from an efficient EEDQ coupling strategy, in which a series of seven bioconjugates were synthesized in yields of 53-78%. Guanosine bioconjugate 7, was used as building block for the synthesis of a target aminoacyl nucleolipid 14. Its GRP78 DNA binding affinity was confirmed by gel shift assay, CD spectroscopy, Tm measurements and dynamic light scattering experiments. Moreover, in a single dose (10 µM) screen against a panel of 60 cancer cell lines, aminoacyl nucleolipid 14 was found to selectively trigger greater than 90% cell death in a SR human leukemia cancer cell line. The reported aminoacyl nucleolipid represents a useful model for a new class of DNA binding molecules for the development of potent and selective anti-cancer agents.