Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(8): 457, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980449

RESUMO

A new enantioselective open-tubular capillary electrochromatography (OT-CEC) was developed employing ß-cyclodextrin covalent organic frameworks (ß-CD COFs) conjugated gold-poly glycidyl methacrylate nanoparticles (Au-PGMA NPs) as a stationary phase. The resulting coating layer on the inner wall of the fabricated capillary column was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS), and electroosmotic flow (EOF) experiments. The performance of the fabricated capillary column was evaluated by CEC using enantiomers of seven model analytes, including two proton pump inhibitors (PPIs, omeprazole and tenatoprazole), three amino acids (AAs, tyrosine, phenylalanine, and tryptophan), and two fluoroquinolones (FQs, gatifloxacin and sparfloxacin). The influences of coating time, buffer concentration, buffer pH, and applied voltage on enantioseparation were investigated to obtain satisfactory enantioselectivity. In the optimum conditions, the enantiomers of seven analytes were fully resolved within 10 min with high resolutions of 3.03 to 5.25. The inter- to intra-day and column-to-column repeatabilities of the fabricated capillary column were lower than 4.26% RSD. Furthermore, molecular docking studies were performed based on the chiral fabricated column and as ligand isomers of analytes using Auto Dock Tools. The binding energies and interactions acquired from docking results of analytes supported the experimental data.


Assuntos
Eletrocromatografia Capilar , Ouro , beta-Ciclodextrinas , Eletrocromatografia Capilar/métodos , Ouro/química , beta-Ciclodextrinas/química , Estereoisomerismo , Ácidos Polimetacrílicos/química , Aminoácidos/química , Aminoácidos/análise , Fluoroquinolonas/química , Fluoroquinolonas/análise , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Simulação de Acoplamento Molecular
2.
Anal Chim Acta ; 1292: 342242, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309852

RESUMO

BACKGROUND: With the rapid growth of the demand for optically pure compounds in the fields of biology, medicine and stereospecific synthesis, it is of great importance to develop efficient, economical, simple enantioseparation and analysis methods. Open tubular capillary electrochromatography (OT-CEC) has attracted much attention in the field of chiral separation, but its column capacity and the sensitivity of common-used optical detection are relatively low. Zeolite beta nanomaterial is both enantioselective and size-selective, providing suitable chiral microenvironment for chiral recognition, and amperometric detection (AD) avoids the low sensitivity caused by the short optical path in optical detection to some extent. RESULTS: Zeolite beta nanomaterials with different particle sizes (25, 50 and 200 nm) were synthesized, and the morphology and structure were characterized by scanning electron microscopy and X-ray diffraction. Then, a novel chiral OT column was prepared by one-step method using zeolite beta nanomaterial as chiral stationary phase, and its separation performance was characterized by miniaturized CEC with AD (mini-CEC-AD) device. Under the optimum conditions, six groups of chiral drugs achieved baseline separation. Norepinephrine enantiomers were used for evaluating the inter-day, intra-day and inter-column reproducibility of the prepared open-tubular column. The relative standard deviations of migration time, peak area, resolution and selectivity factor were within 8.7 %. The limits of detection for norepinephrine enantiomers were 0.18 µg mL-1 (S/N = 3), and the average recoveries were in range of 96.7-105.0 %. This developed method has been successfully applied to the analysis of impurity enantiomer in potassium dichromate (+)-norepinephrine injection sample. SIGNIFICANCE: Zeolite beta nanomaterial was used as the stationary phase to prepare chiral OT columns for the first time, and this one-step preparation method is simple and easy. The introduction of zeolite beta enriches the types of chiral stationary phase materials in electrochromatographic columns, and mini-OT-CEC-AD system provides an alternative for fast enantioseparation of chiral compounds.

3.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446765

RESUMO

This work presents a study on the application of wall open tubular column (WCOT) in liquid chromatography coupled with tandem mass spectrometry. Each process step reports the column preparation method in detail, subdivided into column pretreatment, silanization, stationary phase coating, and immobilization. Then, an evaluation of the parameters that can affect the efficiency of these columns was made. Atrazine, clomazone, and metolachlor were used as probes during this step. Factors such as stationary phase composition, length, internal diameter, stationary phase mass employed, and injection volume were investigated. In addition, with the help of Knox and Poppe graphs, the columns' performance was evaluated to determine the optimal flow rate and the speed-efficiency relationship, respectively. Based on the results, the best configurations for the WCOT column application to the LC system were defined: length-8 m; inner diameter-25 µm; mass of OV-210-2.5% m/v; and, injection volume-100 nL. Finally, the optimized WCOT column developed in this work was coupled with a commercially-packed trapping column in the nano liquid chromatography system (nanoLC). In this configuration, more significant results were obtained regarding separation resolution, with Rs = 5.9 achieved for the most retained pair of analytes (clomazone and metolachlor).


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida
4.
J Chromatogr A ; 1705: 464205, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37442070

RESUMO

A new kind of covalent organic framework (COF) was first utilized as an stationary phase for open-tubular electrochromatography (OT-CEC) by in situ synthesis immobilized method at room temperature. On the basis of our previous work, 4,4',4″-(1,3,5-Triazine-2,4,6-triyl)trianiline (TZ) and 2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde (BPTA) were employed as building blocks for the synthesis of COF TZ-BPTA. The coated capillary and COF TZ-BPTA were characterized by scanning electron microscopy (SEM). Then, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were also applied to characterize COF TZ-BPTA and the modified column. In SEM, it can be seen that COF TZ-BPTA was the spherical shape and the modified capillary was covered with globular particles equably. The COF TZ-BPTA coated column exhibited good separation resolution and efficiency towards two antiepileptic drugs and other kinds of small organic molecules involving alkylbenzene, sulfonamides, polycyclic aromatic hydrocarbon (PAH), parabens, amino acids and herbicides. The maximum column efficiency was over 2.8 × 105 plates·m-1. In addition, the precisions (RSDs) of the retention times for the alkylbenzenes of intra-day runs (n = 3), inter-day runs (n = 3) and column-to-column runs (n = 3) were all less than 1.70% and separation performance was without obvious change within 100 times run. In addition, the real sample was tested on COF TZ-BPTA coated column. Hence, COF TZ-BPTA showed great potential in the separation domain.


Assuntos
Eletrocromatografia Capilar , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Eletrocromatografia Capilar/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Aminoácidos , Microscopia Eletrônica de Varredura
5.
J Sep Sci ; 46(16): e2300138, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269198

RESUMO

Fluorinated porous materials, which can provide specific fluorine-fluorine interaction, hold great promise for fluoride analysis. Here, a novel fluorinated covalent-organic polymer was prepared by using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,3,5,6-tetrafluorotelephtal aldehyde as the precursors and introduced as stationary phase for open-tubular capillary electrochromatography. The as-synthesized fluorinated covalent-organic polymer and the modified capillary column were characterized by infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Based on strong hydrophobic interaction and fluorine-fluorine interaction provided by fluorinated covalent-organic polymer coating layer, the modified column showed powerful separation selectivity toward hydrophobic compounds, organic fluorides, and fluorinated pesticides. Additionally, the fluorinated covalent-organic polymer with good porosity and regular shape was uniformly and tightly coated on the capillary inner wall. The obtained highest column efficiency could reach up to 1.2 × 105 plates⋅m-1 for fluorophenol. The loading capacity of the modified column can reach 141 pmol for trifluorotoluene. Besides, the relative standard deviations of retention times for intraday run (n = 5), interday run (n = 3), and between columns (n = 3) were all less than 2.55%. Significantly, this novel fluorinated material-based stationary phase shows great application potential in fluorides analysis.

6.
J Pharm Anal ; 13(4): 421-429, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37181296

RESUMO

Chiral metal-organic frameworks (CMOFs) with enantiomeric subunits have been employed in chiral chemistry. In this study, a CMOF formed from 6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid (HQA) and ZnCl2, {(HQA)(ZnCl2)(2.5H2O)}n, was constructed as a chiral stationary phase (CSP) via an in situ fabrication approach and used for chiral amino acid and drug analyses for the first time. The {(HQA)(ZnCl2)(2.5H2O)}n nanocrystal and the corresponding chiral stationary phase were systematically characterised using a series of analytical techniques including scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, circular dichroism, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area measurements. In open-tubular capillary electrochromatography (CEC), the novel chiral column exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including 19 racemic dansyl amino acids and several model chiral drugs (both acidic and basic). The chiral CEC conditions were optimised, and the enantioseparation mechanisms are discussed. This study not only introduces a new high-efficiency member of the MOF-type CSP family but also demonstrates the potential of improving the enantioselectivities of traditional chiral recognition reagents by fully using the inherent characteristics of porous organic frameworks.

7.
J Sep Sci ; 46(14): e2300117, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37246276

RESUMO

A new enantioselective open-tubular capillary electrochromatography was developed employing poly(glycidyl methacrylate) nanoparticles/ß-cyclodextrin covalent organic frameworks chemically immobilized on the inner wall of the capillary as a stationary phase. A pretreated silica-fused capillary reacted with 3-aminopropyl-trimethoxysilane followed by poly(glycidyl methacrylate) nanoparticles and ß-cyclodextrin covalent organic frameworks through a ring-opening reaction. The resulting coating layer on the capillary was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The electroosmotic flow was studied to evaluate the variation of the immobilized columns. The chiral separation performance of the fabricated capillary columns was validated by the analysis of the four racemic proton pump inhibitors including lansoprazole, pantoprazole, tenatoprazole, and omeprazole. The influences of bonding concentration, bonding time, bonding temperature, buffer type and concentration, buffer pH, and applied voltage on the enantioseparation of four proton pump inhibitors were investigated. Good enantioseparation efficiencies were achieved for all enantiomers. In the optimum conditions, the enantiomers of four proton pump inhibitors were fully resolved within 10 min with high resolutions of 9.5-13.9. The column-to-column and inter- to intra-day repeatability of the fabricated capillary columns through relative standard deviation were found better than 9.54%, exhibiting satisfactory stability and repeatability of the fabricated capillary columns.

8.
J Sep Sci ; 46(10): e2200711, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929049

RESUMO

An open tubular capillary electrochromatography column covalently bonded with polystyrene sulfonate was prepared via in situ polymerization using functionalized Azo-initiator 4,4'-Azobis(4-cyanopentanoyl chloride). Scanning electron, fluorescence, and atomic force microscopy techniques showed the formation of a relatively rough layer of polymer. In addition, -CN and C = O stretching vibrations from infrared spectroscopy proved the successful immobilization of the azo-initiator through covalent bonding and X-ray photoelectron spectroscopy confirmed the elemental composition of the formed polymer layer. The prepared column was found to be appropriate for small and medium-sized molecules separation. Compared to bare fused silica capillary column higher selectivity and resolution were obtained for the separation of alkaloids, sulfonamides, and peptides as a result of the electrostatic and pi-pi stacking interactions between the small organic molecules and the coated column without compromising the electroosmotic flow mobility. Separation efficiency was also increased compared to the bare capillary for the separation of alkaloids (about 1.5 times). Moreover, intraday, inter-day, intra-batch, and inter-batch relative standard deviation values of retention time and peak area of peptides were within 2% and 10%, respectively, indicating good repeatability of the column preparation procedure. The developed method for the covalent bonding of polymers through a functionalized azo-initiator could represent a promising stable method for the preparation of an open tubular column.


Assuntos
Alcaloides , Eletrocromatografia Capilar , Cloretos , Sulfonamidas , Polimerização , Polímeros/química , Peptídeos , Eletrocromatografia Capilar/métodos
9.
J Chromatogr A ; 1693: 463860, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36822037

RESUMO

Multiple-open-tubular columns enabling transverse diffusion (MOTTD) consist of straight and parallel flow-through channels separated by a mesoporous stationary phase. In Part 1, a stochastic model of band broadening along MOTTD columns accounting for longitudinal diffusion, trans-channel velocity bias, and mass transfer resistance in the stationary phase was derived to demonstrate the intrinsic advantage of MOTTD columns over classical particulate columns. In Part 2, the model was refined for the critical contribution of the channel-to-channel polydispersity and applied to address the best trade-off between analysis speed and performance. In this Part 3, a MOTTD column with a square array of quadratic channels is fabricated by 3D-printing (combining polymer stereolithography with photolithography using photomasks) to deliver unprecedently small apparent channel diameters of 117.6 ± 5.0 µm. The colors in the microscopy photographs of the actual 3D-printed channels are binarized to delimitate the mobile phase volume from the stationary phase volume. The same numerical simulations as those in Part 2 are then performed for two MOTTD columns (external porosity ϵe=31.7%, same apparent channel diameter 117.6 µm): one containing 16 virtual perfect quadratic channels and the other 16 real 3D-printed channels. The reduced velocities (or Peclet numbers) are varied over a wide range from 0.2 to 5000 and the zone retention factors were fixed at k1=1.04, 5, and 25. The results demonstrate that smoothing the edges of the targeted quadratic channels by the 3D-printed technique is advantageous in terms of solute dispersion. It outperforms the negative effect of the channel-to-channel polydispersity which is mitigated by transverse diffusion of the analyte in the stationary phase. For Peclet numbers larger than 50, the HETP of the 3D-printed MOTTD column is found 7%, 15%, and 16% smaller than that of the MOTTD column consisting of a square array of perfect quadratic channels. This confirms the known effect of channel geometry on solute dispersion in microfluidic systems. Flow channels in fabricated MOTTD columns are preferred to be circular so that the distribution of transverse diffusion lengths across the open channels remains as tight as possible. Finally, the general theory of nonuniform columns of Giddings reveals that the polydispersity of the cross-sectional area (RSD 8.4%) along a single 3D-printed channel has no negative impact on solute dispersion in MOTTD columns. Overall, MOTTD columns could become a serious alternative technology to conventional particulate columns. This implies a novel fabrication process that delivers circular channel diameters smaller than 10 µm, cross-sectional area polydispersity no larger than 25%, external porosities in a range from 15% (high speed separations) to 75% (high performance separations), and conventional mesoporous silica as the stationary phase. It adresses new synthesis routes based on either organic fibers or tubular micelle templating agents in suspension with silica gel solutions.


Assuntos
Impressão Tridimensional , Dióxido de Silício , Simulação por Computador , Difusão , Porosidade
10.
Anal Chim Acta ; 1240: 340775, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641145

RESUMO

Development of high-throughput and rapid screening analytical method is in high demand for anti-doping and clinical point-of-care (POC) analysis. Solid-phase microextraction and mass spectrometry direct coupling (SPME-MS) has been proved as a rapid and effective way for target analysis in complex sample matrixes. An online direct coupling of in-tube SPME (IT-SPME) with MS using polymer coated open-tubular column has been developed in this work. A sharp stainless-steel needle was attached at the end of the SPME column, which enables the direct ionization of the analytes after elution from the IT-SPME column. Itaconic acid-benzene co-polymer was in-situ grown on the inner surface of the fused silica capillary and used as extraction phase. This column has low backpressure and provides both hydrophobic and weak cationic exchange interaction with the target analytes due to the chemical properties. The developed online IT-SPME-MS method showed good extraction performance towards various target analytes and good reusability at least for 60 times. As a proof-of-concept application, the above method was applied for the analysis of antiepileptic drugs (AEDs) in both plasma and urine samples with linear range (1 ng/mL-200 ng/mL), good linearity (R2 ≥ 0.99), and good reproducibility (intra-day RSDs less than 4.36%, inter-day RSDs less than 6.55%). The method exhibited high enrichment factors between 187 and 204 for the two AEDs and high sensitivity for the analysis of human plasma samples and urine samples.


Assuntos
Anticonvulsivantes , Polímeros , Humanos , Polímeros/química , Microextração em Fase Sólida/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos
11.
J Chromatogr A ; 1678: 463346, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35882075

RESUMO

We report on a generic mathematical study of the transient plate height regime in bundles of polydisperse capillaries with diffusional bridging. I.e., we have investigated how the plate height in such systems can be expected to vary with the residence time, or equivalently, with the column length, before reaching a long-time limit wherein the plate height becomes constant. This is important because, in case of systems with a large number of capillaries (N), the transient regime solution is practically much more relevant than the long-time limit solution. The problem has been investigated using a simplified, yet representative geometry that is amenable to a semi-analytical solution, only requiring a numerical integration of the velocity field across a line (2D geometries) or a square or rectangle (3D geometries). The availability of this semi-analytical approach allows to consider the required large number of different random capillary diameter drawings (order of 10,000) needed to establish a sufficiently averaged result (deviation from true mean on the order of 1%). The general solution could be simplified into a set of two-parameter expressions describing either the long-time limit (τ→∞) as well as that of an infinite number of capillaries (N→∞). The combinations of N and τ where these expressions are valid to within an accuracy of 5% could be delimited with simple analytical expressions as well. It has also been observed that the long-time limit solution for the additional plate height (Δhτ→∞) remains dependant on the number of capillaries N, even when N tends to infinity. It is found that Δhτ→∞ can be expected to increase in proportion with N-1 (2D-case) or with ln(N-1) (3D-case). This dependency of Δhτ→∞ on N is a result that is not obtained when modelling the capillary bundle using a representative binary capillary system approach as has been done up-till-now in literature.


Assuntos
Capilares
12.
J Chromatogr A ; 1677: 463323, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35853421

RESUMO

Crown ethers are macrocyclic polyether compounds containing multiple -oxo-methylene-structural units, which are often used for recognition of metal ions and ammonium ions. Inspired by the molecular design of rotaxanes, a novel covalent organic nanospheres material (CON ADBC-Tp) constructed by 4,4'-diaminodibenzo-18-crown-6 (ADBC) and 2,4,6-triformylphloroglucinol (Tp) was rationally designed as stationary phase for the separation of compounds containing imidazole structure. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) were carried out to confirm the morphology and composition of ADBC-Tp and ADBC-Tp modified capillary column. Thanks to the introduction of crown ether building ligands, the prepared capillary column exhibited excellent separation selectivity towards protonated imidazole structure, with benzimidazole and its 2-substituted derivatives as modal analytes. Moreover, separation of fungicides, nucleobases, short peptides and sulfanilamides were achieved on ADBC-Tp@capillary. The multifunctional ADBC-Tp@capillary with satisfactory reproducibility and stability gives great promise for separation science.


Assuntos
Eletrocromatografia Capilar , Éteres de Coroa , Nanosferas , Eletrocromatografia Capilar/métodos , Imidazóis/química , Íons , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Chromatogr A ; 1678: 463343, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35872537

RESUMO

The transformation of zero-dimensional carbon dots (CDs) to cross-linked nanomaterials is rare. In this work, a novel carbon dots-based covalent organic nanomaterial (CON CDs-TAPB) consisted of 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and carbon dots (CDs) through facile Schiff-base reaction was synthesized and then employed as a stationary phase for open-tubular capillary electrochromatography (OT-CEC). The CON CDs-TAPB and the CDs-TAPB coated column were characterized through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), UV-spectra experiments and X-ray photoelectron spectroscopy (XPS). Thanks to CON CDs-TAPB unique structure and abundant accessibility and interaction sites, the prepared column exhibited a satisfactory separation ability towards analytes including parabens, phenolic compounds. Among all analytes, the highest column efficiency was over 1.6 × 105 plates·m-1. In addition, affording methylbenzene loading capacity of 156.9 pmole, surpassing most of those materials-based OT-CEC reported thus far. Thus, the prepared carbon dots-based covalent organic nanomaterial (CON CDs-TAPB) gave a potential as a stationary phase in the separation science.


Assuntos
Eletrocromatografia Capilar , Nanoestruturas , Eletrocromatografia Capilar/métodos , Carbono , Fenóis , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Chromatogr A ; 1673: 463202, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35691108

RESUMO

We have recently demonstrated the remarkable performances of liquid chromatography (LC) using 2-µm-i.d. open tubular (OT) columns; peak capacities of 2000+ within less than three hours have been routinely obtained at an elution pressure of around 100 bar or less. However, only a small number of researchers have been involved in the research in this area; part of the reason is due to the issues associated with setting up open tubular liquid chromatography (OTLC) systems. While cautions should be taken here and there in carrying out separations, but none of the issues can inhibit us from performing OTLC separations. Therefore, we feel it desirable to write a tutorial on how to build an OTLC system. In this tutorial, we introduce the key components for the apparatus, how to construct/prepare them or where to purchase them, and how to assemble them together into a complete system. We further discuss the advantages and disadvantages of the system; we mention particularly the practical issues from using the narrow (2-µm-i.d.) columns and how to mitigate these issues.


Assuntos
Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos
15.
J Chromatogr A ; 1673: 463070, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35526299

RESUMO

The development of novel stationary phases to achieve high-efficiency separation is still an important topic in separation sciences. Covalent organic frameworks (COFs) with the advantages of large specific surface areas, high porosity and stability have attracted great attention in chromatographic field. Here, a novel crystalline covalent organic framework (TzDa-V) was designed and synthesized by condensation reaction between 4,4',4″-(1,3,5-Triazine-2,4,6-triyl)trianiline (Tz) and 2,5-diallyloxyterephthalaldehyde (Da-V) for open-tubular capillary electrochromatography (OT-CEC). Thanks to the regular shape, strong hydrophobicity and microporous structure of COF TzDa-V, the TzDa-V modified capillary column exhibited excellent efficiency for the separation of several groups of small molecules, including alkylbenzenes, chlorobenzenes, sulfonamides and so on. The maximum column efficiency can reach about 2.0 × 105 plates•m-1 (for chlorobenzene). Besides, the prepared COF TzDa-V modified OT-column can afford methylbenzene loading capacity of 127.72 pmol. Also, the OT-columns were considerably stable and reproducible. The RSDs of intra-day (n = 3), inter-day (n = 3) and three batches runs for the retention times of four benzenes were all below 1.89%. Our successful work indicates the great potential of COF TzDa-V in CEC for high-efficiency separation.


Assuntos
Eletrocromatografia Capilar , Estruturas Metalorgânicas , Eletrocromatografia Capilar/métodos , Estruturas Metalorgânicas/química , Porosidade
16.
Chirality ; 34(3): 537-549, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997664

RESUMO

Covalent organic frameworks (COFs) have been recognized as promising solid phases in capillary electrochromatography (CEC). Imine-based COF-coated open-tubular CEC column (COF TpBD-coated OT column) was prepared and characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), nitrogen adsorption/desorption (Brunauer-Emmett-Teller [BET]), and scanning electron microscopy (SEM). The results showed that the column efficiency was up to 26,776 plate/m, and the thickness of stationary phase was about 6.00 µm for the column prepared under the optimal conditions. Enantioseparation of 15 kinds of the single chiral compounds (histidine, arginine, lysine, leucine, threonine, methionine, valine, aspartic acid and glutamic acid, fipronil, diclofop, imazamox, quizalofop-p, imazethapyr, and acephate) and 3 kinds of mixed amino acids racemaces (valine, methionine, and glutamic acid) were performed with three methods: capillary electrochromatography with COF TpBD-coated OT column (Method 1), CEC with COF TpBD-coated OT column as the separation channels, and capillary electrophoresis (CE) with HP-ß-CD as the chiral mobile phase additive (Method 2) and CE with HP-ß-CD as the chiral mobile phase additive (Method 3). Separation efficiency and chiral selectivity of Method 2 was best among the three methods. Under the optimal separation conditions of Method 2, all the enantiomers reached the baseline separation regardless of the single chiral compounds or the mixed amino acids. Relative standard deviation (RSDs) of the mean column efficiency for reproducibility and stability was in the range of 0.46-1.49%. This combination of CEC and CE has great potential for use in chiral separation.


Assuntos
Eletrocromatografia Capilar , Ciclodextrinas , Estruturas Metalorgânicas , Eletrocromatografia Capilar/métodos , Estruturas Metalorgânicas/química , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
17.
Mikrochim Acta ; 188(11): 375, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635945

RESUMO

A novel kind of chiral open-tubular (OT) column was established with homochiral zeolitic imidazolate framework-8 nanomaterials using L-histidine as the chiral carbon center (L-His-ZIF-8). The morphologies of L-His-ZIF-8 nanoparticles and chiral OT column were characterized by scanning electron microscopy. The effects of L-His-ZIF-8 concentrations, pH values, and concentrations of the running buffer on the resolution of the selected chiral compounds were investigated based on miniaturized capillary electrochromatography with amperometric detection system (mini-CEC-AD), respectively. The separation performances of the prepared L-His-ZIF-8@OT chiral columns were explored under the optimal conditions, and the RSDs of run-to-run, day-to-day, and column-to-column reproducibility were less than 6.7% using salbutamol raceme as the model enantiomers. The prepared chiral OT columns have been successfully applied to the enantioseparation of one pair of amino acid enantiomers, two pairs of racemic drugs, and three pairs of neurotransmitter enantiomers. Under the optimum conditions, the prepared OT columns were applied to real-world sample analysis of salbutamol aerosol. The limits of detection of salbutamol raceme were 0.90 µg·mL-1 (S/N = 3), and the recovery was 80.4-82.7%. The assay results indicated that this kind of chiral OT column modified with homochiral L-His-ZIF-8 possesses good reproducibility and stability. This developed mini-OT-CEC-AD system has some attractive characteristics of sensitivity and low cost, providing a potential way for the separation of chiral compounds.


Assuntos
Eletrocromatografia Capilar
18.
Heliyon ; 7(9): e07904, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522803

RESUMO

Hydrodynamic chromatography (HDC) is a technique originally developed for separating particles. We have recently extended it to DNA fragment sizing and quantitation. In this review, we focus on this extension. After we briefly introduce the history of HDC, we present the evolution of open tubular HDC for DNA fragment sizing. We cover both the theoretical aspect and the experimental implementation of this technique. We describe various approaches to execute the separation, discuss its representative applications and provide a future perspective of this technique in the conclusion section of this review.

19.
Electrophoresis ; 42(24): 2664-2671, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34499755

RESUMO

Enhancing the specific surface area of stationary phase is important in chromatographic science, especially in open-tubular column in which the coating only exists on the inner surface. In this work, a porous layer open-tubular (PLOT) column with stationary phase of styrene and itaconic acid-copolymerized polymer was developed. Thermal-initiated polymerization method with strategies like controlling the ratio of reaction reagents to solvents and reaction time, confinement by the narrow inner diameter of capillary were used for preparing the stationary phase with uniform structure and relatively thick layer. Due to the high separation efficiency and capacity, the PLOT column was used for capillary electrochromatography (CEC) separation of multiple groups of analytes like alkylbenzenes, phenyl amines, phenols, vanillins, and sulfonamides with theoretical plates (N) up to 1,54,845 N/m. In addition, due to high permeability of the CEC column and large electroosmotic flow mobility generated by abundant carboxyl groups in the coating material, the PLOT-CEC column was successfully coupled with mass spectrometry (MS) through a sheath flow interface. The developed PLOT-CEC-MS method was used for the analysis of antiseptics like parabens and herbicides like pyridines.


Assuntos
Eletrocromatografia Capilar , Espectrometria de Massas em Tandem , Estireno , Succinatos
20.
Talanta ; 233: 122488, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215110

RESUMO

Candida antarctica lipase B (CALB) is a natural biocatalyst with an intrinsically strong chiral environment and a high degree of enantio-selectivity, which is widely used in the separation of racemates. Here, a facile and efficient covalent immobilization approach was utilized to immobilize CALB onto the capillary inner wall as a novel chiral stationary phase to explore and broaden its application in the direct chiral separation by electrochromatography. The obtained CALB immobilized capillary column was characterized by scanning electron microscopy (SEM), fluorescence imaging and Fourier transform infrared spectroscopy (FT-IR). The enantioseparation property of the CALB immobilized capillary column was confirmed by direct chiral separation of several pairs of monoamine neurotransmitter enantiomers in OT-CEC mode. Outstanding enantioseparation performance for three types of monoamine neurotransmitter enantiomers including epinephrine, norepinephrine and phenylephrine was obtained by the CALB immobilized column. Thanks to the effectiveness of covalent bonding method and the intrinsic stability of CALB, the prepared CALB immobilized capillary columns were quite steady and reproducible. The relative standard deviations for retention times of the enantiomers were as follows: for intra-day (n = 5) runs (≤0.25%), inter-day (n = 3) runs (≤0.72%) and between-columns (n = 3) (≤2.42%). After 90 consecutive runs in CEC mode, the CALB immobilized column still exhibited desirable enantionseparation performance.


Assuntos
Eletrocromatografia Capilar , Basidiomycota , Lipase , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA