Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34372577

RESUMO

A novel Enterobacter cloacae phage, EC151, was isolated and characterized. Electron microscopy revealed that EC151 has a siphovirus-like virion morphology. The EC151 nucleotide sequence shows limited similarity to other phage genomes deposited in the NCBI GenBank database. The size of the EC151 genome is 60,753 bp and contains 58 putative genes. Thirty-nine of them encode proteins of predicted function, 18 are defined as hypothetical proteins, and one ORF identifies as the tRNA-Ser-GCT-encoding gene. Six ORFs were predicted to be members of the deazaguanine DNA modification pathway, including the preQ0 transporter. Comparative proteomic phylogenetic analysis revealed that phage EC151 represents a distinct branch within a group of sequences containing clades formed by members of the Seuratvirus, Nonagvirus, and Vidquintavirus genera. In addition, the EC151 genome showed gene synteny typical of the Seuratvirus, Nonagvirus, and Nipunavirus phages. The average genetic distances of EC151/Seuratvirus, EC151/Nonagvirus, and EC151/Vidquintavirus are approximately equal to those between the Seuratvirus, Nonagvirus, and Vidquintavirus genera (~0.7 substitutions per site). Therefore, EC151 may represent a novel genus within the Siphoviridae family. The origin of the deazaguanine DNA modification pathway in the EC151 genome can be traced to Escherichia phages from the Seuratvirus genus.


Assuntos
Bacteriófagos/genética , Enterobacter cloacae/genética , Enterobacter cloacae/virologia , DNA Viral/genética , Enterobacter cloacae/metabolismo , Genoma Viral/genética , Genômica , Especificidade de Hospedeiro , Filogenia , Proteômica , Siphoviridae/genética , Proteínas Virais/genética , Vírion/metabolismo
2.
Biomolecules ; 7(1)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208705

RESUMO

Queuosine (Q) is a complex modification of the wobble base in tRNAs with GUN anticodons. The full Q biosynthesis pathway has been elucidated in Escherichia coli. FolE, QueD, QueE and QueC are involved in the conversion of guanosine triphosphate (GTP) to 7-cyano-7-deazaguanine (preQ0), an intermediate of increasing interest for its central role in tRNA and DNA modification and secondary metabolism. QueF then reduces preQ0 to 7-aminomethyl-7-deazaguanine (preQ1). PreQ1 is inserted into tRNAs by tRNA guanine(34) transglycosylase (TGT). The inserted base preQ1 is finally matured to Q by two additional steps involving QueA and QueG or QueH. Most Eubacteria harbor the full set of Q synthesis genes and are predicted to synthesize Q de novo. However, some bacteria only encode enzymes involved in the second half of the pathway downstream of preQ0 synthesis, including the signature enzyme TGT. Different patterns of distribution of the queF, tgt, queA and queG or queH genes are observed, suggesting preQ0, preQ1 or even the queuine base being salvaged in specific organisms. Such salvage pathways require the existence of specific 7-deazapurine transporters that have yet to be identified. The COG1738 family was identified as a candidate for a missing preQ0/preQ1 transporter in prokaryotes, by comparative genomics analyses. The existence of Q precursor salvage was confirmed for the first time in bacteria, in vivo, through an indirect assay. The involvement of the COG1738 in salvage of a Q precursor was experimentally validated in Escherichia coli, where it was shown that the COG1738 family member YhhQ is essential for preQ0 transport.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Guanina/análogos & derivados , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Guanina/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Nucleosídeo Q/biossíntese , Nucleosídeo Q/química , RNA de Transferência de Ácido Aspártico
3.
Proteins ; 85(1): 103-116, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802572

RESUMO

The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ0 ) base of preQ0 -modified tRNA to a formamidino group. The structure, determined in the presence of preQ0 , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ0 forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ0 binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.


Assuntos
Amidinotransferases/química , Proteínas Arqueais/química , Guanosina/análogos & derivados , Pirimidinonas/química , Pyrobaculum/enzimologia , Pirróis/química , Processamento Pós-Transcricional do RNA , Amidinotransferases/genética , Amidinotransferases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanosina/química , Guanosina/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pirimidinonas/metabolismo , Pyrobaculum/genética , Pirróis/metabolismo , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
Beilstein J Org Chem ; 10: 1333-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24991286

RESUMO

A convergent and stereoselective synthesis of chiral cyclopentyl- and cyclohexylamine derivatives of nucleoside Q precursor (PreQ0) has been accomplished. This synthetic route allows for an efficient preparation of 4-substituted analogues with interesting three-dimensional character, including chiral cyclopentane-1,2-diol and -1,2,3-triol derivatives. This unusual substitution pattern provides a useful starting point for the discovery of novel bioactive molecules.

5.
Biochim Biophys Acta ; 1839(10): 939-950, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24798077

RESUMO

PreQ1 riboswitches help regulate the biosynthesis and transport of preQ1 (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ1 riboswitches have been identified (preQ1-I and preQ1-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQ1 binding, each of which has distinct unusual features and modes of preQ1 recognition. These features include an unusually long loop 2 in preQ1-I pseudoknots and an embedded hairpin in loop 3 in preQ1-II pseudoknots. PreQ1-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQ1 riboswitches. This article is part of a Special Issue entitled: Riboswitches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA