Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 615, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385196

RESUMO

Focused ultrasound ablation surgery (FUAS) is a minimally invasive treatment option that has been utilized in various tumors. However, its clinical advancement has been hindered by issues such as low safety and efficiency, single image guidance mode, and postoperative tumor residue. To address these limitations, this study aimed to develop a novel multi-functional gas-producing engineering bacteria biological targeting cooperative system. Pulse-focused ultrasound (PFUS) could adjust the ratio of thermal effect to non-thermal effect by adjusting the duty cycle, and improve the safety and effectiveness of treatment.The genetic modification of Escherichia coli (E.coli) involved the insertion of an acoustic reporter gene to encode gas vesicles (GVs), resulting in gas-producing E.coli (GVs-E.coli) capable of targeting tumor anoxia. GVs-E.coli colonized and proliferated within the tumor while the GVs facilitated ultrasound imaging and cooperative PFUS. Additionally, multifunctional cationic polyethyleneimine (PEI)-poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEI-PLGA/EPI/PFH@Fe3O4) containing superparamagnetic iron oxide (SPIO, Fe3O4), perfluorohexane (PFH), and epirubicin (EPI) were developed. These nanoparticles offered synergistic PFUS, supplementary chemotherapy, and multimodal imaging capabilities.GVs-E.coli effectively directed the PEI-PLGA/EPI/PFH@Fe3O4 to accumulate within the tumor target area by means of electrostatic adsorption, resulting in a synergistic therapeutic impact on tumor eradication.In conclusion, GVs-E.coli-mediated multi-functional nanoparticles can synergize with PFUS and chemotherapy to effectively treat tumors, overcoming the limitations of current FUAS therapy and improving safety and efficacy. This approach presents a promising new strategy for tumor therapy.


Assuntos
Escherichia coli , Imagem Multimodal , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Escherichia coli/efeitos dos fármacos , Camundongos , Imagem Multimodal/métodos , Linhagem Celular Tumoral , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fluorocarbonos/química , Polietilenoimina/química , Humanos , Engenharia Genética/métodos , Camundongos Endogâmicos BALB C , Técnicas Fotoacústicas/métodos , Feminino , Nanopartículas/química , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Epirubicina/química , Ácido Poliglicólico/química , Ácido Láctico/química , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos
2.
J Neurooncol ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180641

RESUMO

PURPOSE: Glioblastoma (GBM), a lethal primary adult malignancy, is difficult to treat because of the restrictive nature of the blood-brain barrier (BBB), blood-tumor barrier (BTB), and the immunosuppressive tumor microenvironment (TME). Since pulsed focused ultrasound (pFUS) is currently used to improve therapeutic deliveries across these barriers, this study aims to characterize the impact of pFUS on the TME proteomics upon opening the BBB and BTB. METHODS: We utilized MRI-guided, pFUS with ultrasound contrast microbubbles (termed 'pFUS' herein) to selectively and transiently open the BBB and BTB investigating proteomic modifications in the TME. Utilizing an orthotopically-allografted mouse GL26 GBM model (Ccr2RFP/wt - Cx3cr1GFP/wt), pFUS's effect on glioma proteomics was evaluated using a Luminex 48-plex assay. RESULTS: pFUS treated tumors exhibited increases in pro-inflammatory cytokines, chemokines, and trophic factors (CCTFs). Proteomic changes in tumors tend to peak at 24 h after single pFUS session (1x), with levels then plateauing or declining over the subsequent 24 h. Tumors receiving three pFUS sessions (3x) showed elevated CCTFs levels peaking as early as 6 h after the third session. CONCLUSIONS: pFUS together with microbubbles induces a sterile inflammatory response in the TME of a mouse GBM tumor. Moreover, this proinflammatory shift can be sustained and perhaps primed for more rapid responses upon multiple sessions of pFUS. These findings raise the intriguing potential that pFUS-induced BBB and BTB opening may not only be effective in facilitating the therapeutic agent delivery, but also be harnessed to modify the TME to assist immunotherapies in overcoming immune evasion in GBM.

3.
Int J Hyperthermia ; 41(1): 2350759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38719202

RESUMO

INTRODUCTION: Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thermal ablation is an effective noninvasive ultrasonic therapy to disrupt in vivo porcine tendon but is prone to inducing skin burns. We evaluated the safety profile of a novel hybrid protocol that minimizes thermal spread by combining long-pulse focused ultrasound followed by thermal ablation. METHODS: In-vivo Achilles tendons (hybrid N = 15, thermal ablation alone N = 21) from 15 to 20 kg Yorkshire pigs were randomly assigned to 6 treatment groups in two studies. The first (N = 21) was ablation (600, 900, or 1200 J). The second (N = 15) was hybrid: pulsed FUS (13.5 MPa peak negative pressure) followed by ablation (600, 900, or 1200 J). Measurements of ankle range of motion, tendon temperature, thermal dose (240 CEM43), and assessment of skin burn were performed in both groups. RESULTS: Rupture was comparable between the two protocols: 1/5 (20%), 5/5 (100%) and 5/5 (100%) for hybrid protocol, compared to 2/7 (29%), 6/7 (86%) and 7/7 (100%) for the ablation-only protocol with energies of 600, 900, and 1200 J, respectively. The hybrid protocol produced lower maximum temperatures, smaller areas of thermal dose, fewer thermal injuries to the skin, and fewer full-thickness skin burns. The standard deviation for the area of thermal injury was also smaller for the hybrid protocol, suggesting greater predictability. CONCLUSION: This study demonstrated a hybrid MRgFUS protocol combining long-pulse FUS followed by thermal ablation to be noninferior and safer than an ablation-only protocol for extracorporeal in-vivo tendon rupture for future clinical application for noninvasive release of contracted tendon.


Assuntos
Imageamento por Ressonância Magnética , Animais , Suínos , Imageamento por Ressonância Magnética/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Tendões/diagnóstico por imagem , Terapia por Ultrassom/métodos
4.
Int J Radiat Biol ; 99(11): 1716-1723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191462

RESUMO

PURPOSE: The purpose of this study was to investigate the in vivo combined effects of pulsed focused ultrasound (pFUS) and radiation (RT) for prostate cancer treatment. MATERIALS AND METHODS: An animal prostate tumor model was developed by implanting human LNCaP tumor cells in the prostates of nude mice. Tumor-bearing mice were treated with pFUS, RT or both (pFUS + RT) and compared with a control group. Non-thermal pFUS treatment was delivered by keeping the body temperature below 42 °C as measured real-time by MR thermometry and using a pFUS protocol (1 MHz, 25 W focused ultrasound; 1 Hz pulse rate with a 10% duty cycle for 60 sec for each sonication). Each tumor was covered entirely using 4-8 sonication spots. RT treatment with a dose of 2 Gy was delivered using an external beam (6 MV photon energy with dose rate 300MU/min). Following the treatment, mice were scanned weekly with MRI for tumor volume measurement. RESULTS: The results showed that the tumor volume in the control group increased exponentially to 142 ± 6%, 205 ± 12%, 286 ± 22% and 410 ± 33% at 1, 2, 3 and 4 weeks after treatment, respectively. In contrast, the pFUS group was 29% (p < 0.05), 24% (p < 0.05), 8% and 9% smaller, the RT group was 7%, 10%, 12% and 18% smaller, and the pFUS + RT group was 32%, 39%, 41% and 44% (all with p < 0.05) smaller than the control group at 1, 2, 3, and 4 weeks post treatment, respectively. Tumors treated by pFUS showed an early response (i.e. the first 2 weeks), while the RT group showed a late response. The combined pFUS + RT treatment showed consistent response throughout the post-treatment weeks. CONCLUSIONS: These results suggest that RT combined with non-thermal pFUS can significantly delay the tumor growth. The mechanism of tumor cell killing between pFUS and RT may be different. Pulsed FUS shows early tumor growth delay, while RT contributes to the late effect on tumor growth delay. The addition of pFUS to RT significantly enhanced the therapeutic effect for prostate cancer treatment.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Camundongos Nus , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Ondas Ultrassônicas , Terapia Combinada
5.
Ultrasound Med Biol ; 48(6): 1045-1057, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341621

RESUMO

Sonicating deep brain regions with pulsed focused ultrasound using magnetic resonance imaging-guided neuronavigation single-element piezoelectric transducers is a new area of exploration for neuromodulation. Upper cranial nerves such as the trigeminal nerve and other nerves responsible for sensory/motor functions in the head may be potential targets for ultrasound pain therapy. The location of upper cranial nerves close to the skull base poses additional challenges when compared with conventional cortical or middle brain targets. In the work described here, a series of computational and empirical testing methods using human skull specimens were conducted to assess the feasibility of sonicating the trigeminal pathway near the sphenoid bone region. The results indicate a transducer with a focal length of 120 mm and diameter of 85 mm (350 kHz) can deliver sonication to upper cranial nerve regions with spatial accuracy comparable to that of focused ultrasound brain targets used in previous human studies. Temperature measurements in cortical bone and in the skull base with embedded thermocouples yield evidence of minimal bone heating. Conventional pulse parameters were found to cause reverberation interference patterns near the cranial floor; therefore, changes in pulse cycles and pulse repetition frequency were examined for reducing standing waves. Limitations and considerations for conducting ultradeep focal targeting in human applications are discussed.


Assuntos
Encéfalo , Sonicação , Nervos Cranianos , Estudos de Viabilidade , Humanos , Crânio/diagnóstico por imagem , Crânio/cirurgia
6.
Small ; 16(46): e2004735, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079457

RESUMO

Niemann-Pick disease type C (NPC) is a severe disorder that is characterized by intracellular transport abnormalities leading to cytoplasmic accumulation of lipids such as cholesterol and sphingolipids. The compound 2-hydroxypropyl-ß-cyclodextrin (HPßCD) has high cholesterol complexation capacity and is currently under clinical investigation for the NPC treatment. However, due to its short blood half-life, high doses are required to produce a therapeutic effect. In this work, stable polymerized HPßCD is generated to investigate their in vitro mechanisms of action and in vivo effects. Crosslinked CDs (8-312 kDa) display a ninefold greater cholesterol complexation capacity than monomeric HPßCD but are taken up to a lower extent, resulting in an overall comparable in vitro effect. In vivo, the 19.3 kDa HPßCD exhibits a longer half-life than the monomeric HPßCD but it does not increase the life span of Npc1 mice, possibly due to reduced brain penetration. This is circumvented by the application of magnetic resonance imaging-guided low intensity-pulsed focused ultrasound (MRIg-FUS), which increases the brain penetration of the CD. In conclusion, stable polymerized HPßCDs can elucidate CDs' mechanism of action while the use of MRIg-FUS warrants further investigation, as it may be key to harnessing CDs full therapeutic potential in the NPC treatment.


Assuntos
Ciclodextrinas , Doença de Niemann-Pick Tipo C , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Transporte Biológico , Colesterol , Camundongos , Doença de Niemann-Pick Tipo C/tratamento farmacológico
7.
J Cell Mol Med ; 24(22): 13278-13288, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33067927

RESUMO

Image-guided pulsed focused ultrasound (pFUS) is a non-invasive technique that can increase tropism of intravenously (IV)-infused mesenchymal stromal cells (MSC) to sonicated tissues. MSC have shown promise for cardiac regenerative medicine strategies but can be hampered by inefficient homing to the myocardium. This study sonicated the left ventricles (LV) in rats with magnetic resonance imaging (MRI)-guided pFUS and examined both proteomic responses and subsequent MSC tropism to treated myocardium. T2-weighted MRI was used for pFUS targeting of the entire LV. pFUS increased numerous pro- and anti-inflammatory cytokines, chemokines, and trophic factors and cell adhesion molecules in the myocardial microenvironment for up to 48 hours post-sonication. Cardiac troponin I and N-terminal pro-B-type natriuretic peptide were elevated in the serum and myocardium. Immunohistochemistry revealed transient hypoxia and immune cell infiltration in pFUS-targeted regions. Myocardial tropism of IV-infused human MSC following pFUS increased twofold-threefold compared with controls. Proteomic and histological changes in myocardium following pFUS suggested a reversible inflammatory and hypoxic response leading to increased tropism of MSC. MR-guided pFUS could represent a non-invasive modality to improve MSC therapies for cardiac regenerative medicine approaches.


Assuntos
Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/citologia , Miocárdio/metabolismo , Ultrassonografia/métodos , Animais , Citocinas/metabolismo , Feminino , Ventrículos do Coração/metabolismo , Humanos , Hipóxia , Imuno-Histoquímica , Inflamação , Transplante de Células-Tronco Mesenquimais , Permeabilidade , Proteômica , Ratos , Ratos Sprague-Dawley
8.
Cell Transplant ; 29: 963689720965478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33028105

RESUMO

We studied the paracrine function of mesenchymal stem cells (MSCs) derived from various sources in response to pulsed focused ultrasound (pFUS). Human adipose tissue (AD), bone marrow (BM), and umbilical cord (UC) derived MSCs were exposed to pFUS at two intensities: 0.45 W/cm2 ISATA (310 kPa PNP) and 1.3 W/cm2 ISATA (540 kPa PNP). Following pFUS, the viability and proliferation of MSCs were assessed using a hemocytometer and confocal microscopy, and their secreted cytokine profile determined using a multiplex ELISA. Our findings showed that pFUS can stimulate the production of immunomodulatory, anti-inflammatory, and angiogenic cytokines from MSCs which was dependent on both the source of MSC being studied and the acoustic intensity employed. These important findings set the foundation for additional mechanistic and validation studies using this novel noninvasive and clinically translatable technology for modulating MSC biology.


Assuntos
Células da Medula Óssea/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Ensaio de Imunoadsorção Enzimática , Humanos , Microscopia Confocal
9.
Stem Cell Res Ther ; 11(1): 405, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948247

RESUMO

BACKGROUND: The aim of this study was to examine the effect of a three-step approach that utilizes the application of adipose tissue-derived mesenchymal stem cells (AD-MSCs), encapsulation, and pulsed focused ultrasound (pFUS) to help the engraftment and function of transplanted islets. METHODS: In step 1, islets were co-cultured with AD-MSCs to form a coating of AD-MSCs on islets: here, AD-MSCs had a cytoprotective effect on islets; in step 2, islets coated with AD-MSCs were conformally encapsulated in a thin layer of alginate using a co-axial air-flow method: here, the capsule enabled AD-MSCs to be in close proximity to islets; in step 3, encapsulated islets coated with AD-MSCs were treated with pFUS: here, pFUS enhanced the secretion of insulin from islets as well as stimulated the cytoprotective effect of AD-MSCs. RESULTS: Our approach was shown to prevent islet death and preserve islet functionality in vitro. When 175 syngeneic encapsulated islets coated with AD-MSCs were transplanted beneath the kidney capsule of diabetic mice, and then followed every 3 days with pFUS treatment until day 12 post-transplantation, we saw a significant improvement in islet function with diabetic animals re-establishing glycemic control over the course of our study (i.e., 30 days). In addition, our approach was able to enhance islet engraftment by facilitating their revascularization and reducing inflammation. CONCLUSIONS: This study demonstrates that our clinically translatable three-step approach is able to improve the function and viability of transplanted islets.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Diabetes Mellitus Experimental/terapia , Camundongos
10.
Artigo em Inglês | MEDLINE | ID: mdl-32850728

RESUMO

Non-ablative ultrasound (US)-based techniques to improve targeted tropism of systemically infused cell therapies, particularly mesenchymal stromal cell (MSC), have gained attention in recent years. Mechanotransduction following targeted US sonications have been shown to modulate tissue microenvironments by upregulating cytokines, chemokines, and trophic factors in addition to vascular cell adhesion molecules (CAM) that are necessary to promote tropism of MSC. While numerous US treatment parameters have demonstrated increased MSC homing, it remains unclear how the different mechanical US forces [i.e., acoustic radiation forces (ARF) or cavitation forces] influence tissue microenvironments. This study sonicated murine muscle tissue with pulsed focused ultrasound (pFUS) at 0.5 or 1.15 MHz each over a range of US intensities. Following sonication, tissue was assayed for the prostaglandins (PG) PGH2 and PGE2 as indicators of microenvironmental changes that would support MSC tropism. PGH2 and PGE2 levels were correlated to physical pFUS parameters and acoustic emissions measured by hydrophone. While ARF (pFUS with absence of cavitation signatures) was sufficient to increase PGH2 and PGE2, non-linear curve fitting revealed a frequency-independent relationship between prostaglandin production and mechanical index (MI), which accounts for increased cavitation probabilities of lower frequencies. The prostaglandin data suggested molecular changes in muscle would be particularly sensitive to cavitation. Therefore, low-intensity pulsed ultrasound (LIPUS) at 1 MHz was administered with low ARF (MI = 0.2) in combination with intravenous (IV) infusions of microbubble (MB) contrast agents. This combination upregulated prostaglandins and CAM without ultrasound-mediated microbubble destruction and ultimately promoted tropism of IV-infused MSC. This study revealed that accentuating non-destructive MB cavitation by US using parameters similar to diagnostic US contrast imaging increased MSC homing. Such approaches are particularly attractive to overcome clinical translation barriers of many still-experimental US parameters used in previous stem cell tropism studies.

11.
Cancers (Basel) ; 12(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033171

RESUMO

Image-guided focused ultrasound (FUS) has been successfully employed as an ablative treatment for solid malignancies by exposing immune cells to tumor debris/antigens, consequently inducing an immune response within the tumor microenvironment (TME). To date, immunomodulation effects of non-ablative pulsed-FUS (pFUS) on the TME are poorly understood. In this study, the temporal differences of cytokines, chemokines, and trophic factors (CCTFs) and immune cell populations induced by pFUS were interrogated in murine B16 melanoma or 4T1 breast cancer cells subcutaneously inoculated into C57BL/6 or BALB/c mice. Natural history growth characteristics during the course of 11 days showed a progressive increase in size for both tumors, and proteomic analysis revealed a shift toward an immunosuppressive TME. With respect to tumor natural growth, pFUS applied to tumors on days 1, 5, or 9 demonstrated a decrease in the growth rate 24 h post-sonication. Flow cytometry analysis of tumors, LNs, and Sp, as well as CCTF profiles, relative DNA damage, and adaptive T-cell localization within tumors, demonstrated dynamic innate and adaptive immune-modulation following pFUS in early time points of B16 tumors and in advanced 4T1 tumors. These results provide insight into the temporal dynamics in the treatment-associated TME, which could be used to evaluate an immunomodulatory approach in different tumor types.

12.
Ultrasound Med Biol ; 46(3): 630-638, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882169

RESUMO

Pulsed focused ultrasound (pFUS) utilizes short cycles of sound waves to mechanically shake cells within tissues which, in turn, causes transient local increases in cytokines, growth factors and cell adhesion molecules. Although the effect of pFUS has been investigated in several different organs including the kidney, muscle and heart, its effect on the pancreas has not been investigated. In the present work, we applied pFUS to the rodent pancreas with the following parameters: 1.1-MHz frequency, 5-Hz pulse repetition frequency, 5% duty cycle, 10-ms pulse length, 160-s duration. Low-intensity pFUS had a spatial average temporal average intensity of 11.5 W/cm2 and a negative peak pressure of 3 MPa; high-intensity pFUS had a spatial average temporal average intensity of 18.5 W/cm2 and negative peak pressure of 4 MPa. Here we found that pFUS changed the expression of several cytokines while having no effect on the underlying tissue histology or health of pancreatic cells (as reflected by no significant change in plasma levels of amylase and lipase). Furthermore, we found that this effect on cytokine expression in the pancreas was acoustic intensity dependent; while pFUS at low intensities turned off the expression of several cytokines, at high intensities it had the opposite effect and turned on the expression of these cytokines. The ability to non-invasively manipulate the microenvironment of the pancreas using sound waves could have profound implications for priming and modulating this organ for the application of cellular therapies in the context of both regenerative medicine (i.e., diabetes and pancreatitis) and oncology (i.e., pancreatic cancer).


Assuntos
Pâncreas/efeitos da radiação , Ondas Ultrassônicas , Animais , Feminino , Camundongos , Pâncreas/patologia
13.
J Neuroinflammation ; 16(1): 155, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345243

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound combined with the infusion of microbubbles (pFUS+MB) induces transient blood-brain barrier opening (BBBO) in targeted regions. pFUS+MB, through the facilitation of neurotherapeutics' delivery, has been advocated as an adjuvant treatment for neurodegenerative diseases and malignancies. Sterile neuroinflammation has been recently described following pFUS+MB BBBO. In this study, we used PET imaging with [18F]-DPA714, a biomarker of translocator protein (TSPO), to assess for neuroinflammatory changes following single and multiple pFUS+MB sessions. METHODS: Three groups of Sprague-Dawley female rats received MRI-guided pFUS+MB (Optison™; 5-8 × 107 MB/rat) treatments to the left frontal cortex and right hippocampus. Group A rats were sonicated once. Group B rats were sonicated twice and group C rats were sonicated six times on weekly basis. Passive cavitation detection feedback (PCD) controlled the peak negative pressure during sonication. We performed T1-weighted scans immediately after sonication to assess efficiency of BBBO and T2*-weighted scans to evaluate for hypointense voxels. [18F]DPA-714 PET/CT scans were acquired after the BBB had closed, 24 h after sonication in group A and within an average of 10 days from the last sonication in groups B and C. Ratios of T1 enhancement, T2* values, and [18F]DPA-714 percent injected dose/cc (%ID/cc) values in the targeted areas to the contralateral brain were calculated. Histological assessment for microglial activation/astrocytosis was performed. RESULTS: In all groups, [18F]DPA-714 binding was increased at the sonicated compared to non-sonicated brain (%ID/cc ratios > 1). Immunohistopathology showed increased staining for microglial and astrocytic markers in the sonicated frontal cortex compared to contralateral brain and to a lesser extent in the sonicated hippocampus. Using MRI, we documented BBB disruption immediately after sonication with resolution of BBBO 24 h later. We found more T2* hypointense voxels with increasing number of sonications. In a longitudinal group of animals imaged after two and after six sonications, there was no cumulative increase of neuroinflammation on PET. CONCLUSION: Using [18F]DPA-714 PET, we documented in vivo neuroinflammatory changes in association with pFUS+MB. Our protocol (utilizing PCD feedback to minimize damage) resulted in neuroinflammation visualized 24 h post one sonication. Our findings were supported by immunohistochemistry showing microglial activation and astrocytosis. Experimental sonication parameters intended for BBB disruption should be evaluated for neuroinflammatory sequelae prior to implementation in clinical trials.


Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Microglia/metabolismo , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Feminino , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Ratos Sprague-Dawley , Sonicação
14.
Ultrason Sonochem ; 53: 59-67, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30559082

RESUMO

Inertial cavitation is crucial for the therapeutic effects of sonodynamic. Therefore, approaches that can induce highly efficient inertial cavitation should be of benefit for sonodynamic effect. Our previous study demonstrated that highly efficient inertial cavitation activity can be achieved through the combinatorial use of a short-pulsed focused ultrasound (SPFU) sequence and perfluorohexane (PFH) nanodroplets. Herein, we applied the SPFU sequence and PFH nanodroplets in sonodynamic. A hydrophobic sonosensitizer, IR780 iodine, was loaded inside denatured bovine serum albumin-shelled PFH (PFH@BSA-IR780) nanodroplets. The sonodynamic efficacy was validated by treating HeLa cervical cancer cells. Under SPFU exposure, PFH@BSA-IR780 nanodroplets were highly effective in promoting reactive oxygen species generation and inducing cancer cell death. A significant decrease in cell viability was achieved within just 10 s. Besides the cytotoxicity of ROS, the mechanical bioeffects of inertial cavitation also led to severe cell death resulting from higher acoustic power or the longer treatment time. The application of the SPFU sequence coupled with PFH@BSA-IR780 nanodroplets is a promising strategy for efficient sonodynamic.

15.
Theranostics ; 8(17): 4837-4855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279741

RESUMO

Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound (pFUS) combined with microbubbles (MB) contrast agent infusion has been shown to transiently disrupt the blood-brain barrier (BBBD), increasing the delivery of neurotherapeutics to treat central nervous system (CNS) diseases. pFUS interaction with the intravascular MB results in acoustic cavitation forces passing through the neurovascular unit (NVU), inducing BBBD detected on contrast-enhanced MRI. Multiple pFUS+MB exposures in Alzheimer's disease (AD) models are being investigated as a method to clear amyloid plaques by activated microglia or infiltrating immune cells. Since it has been reported that pFUS+MB can induce a sterile inflammatory response (SIR) [1-5] in the rat, the goal of this study was to investigate the potential long-term effects of SIR in the brain following single and six weekly sonications by serial high-resolution MRI and pathology. Methods: Female Sprague Dawley rats weighing 217±16.6 g prior to sonication received bromo-deoxyuridine (BrdU) to tag proliferating cells in the brain. pFUS was performed at 548 kHz, ultrasound burst 10 ms and initial peak negative pressure of 0.3 MPa (in water) for 120 s coupled with a slow infusion of ~460 µL/kg (5-8×107 MB) that started 30 s before and 30 s during sonication. Nine 2 mm focal regions in the left cortex and four regions over the right hippocampus were treated with pFUS+MB. Serial high-resolution brain MRIs at 3 T and 9.4 T were obtained following a single or during the course of six weekly pFUS+MB resulting in BBBD in the left cortex and the right hippocampus. Animals were monitored over 7 to 13 weeks and imaging results were compared to histology. Results: Fewer than half of the rats receiving a single pFUS+MB exposure displayed hypointense voxels on T2*-weighted (w) MRI at week 7 or 13 in the cortex or hippocampus without differences compared to the contralateral side on histograms of T2* maps. Single sonicated rats had evidence of limited microglia activation on pathology compared to the contralateral hemisphere. Six weekly pFUS+MB treatments resulted in pathological changes on T2*w images with multiple hypointense regions, cortical atrophy, along with 50% of rats having persistent BBBD and astrogliosis by MRI. Pathologic analysis of the multiple sonicated animals demonstrated the presence of metallophagocytic Prussian blue-positive cells in the parenchyma with significantly (p<0.05) increased areas of activated astrocytes and microglia, and high numbers of systemic infiltrating CD68+ macrophages along with BrdU+ cells compared to contralateral brain. In addition, multiple treatments caused an increase in the number of hyperphosphorylated Tau (pTau)-positive neurons containing neurofibrillary tangles (NFT) in the sonicated cortex but not in the hippocampus when compared to contralateral brain, which was confirmed by Western blot (WB) (p<0.04). Conclusions: The repeated SIR following multiple pFUS+MB treatments could contribute to changes on MR imaging including persistent BBBD, cortical atrophy, and hypointense voxels on T2w and T2*w images consistent with pathological injury. Moreover, areas of astrogliosis, activated microglia, along with higher numbers of CD68+ infiltrating macrophages and BrdU+ cells were detected in multiple sonicated areas of the cortex and hippocampus. Elevations in pTau and NFT were detected in neurons of the multiple sonicated cortex. Minimal changes on MRI and histology were observed in single pFUS+MB-treated rats at 7 and 13 weeks post sonication. In comparison, animals that received 6 weekly sonications demonstrated evidence on MRI and histology of vascular damage, inflammation and neurodegeneration associated with the NVU commonly observed in trauma. Further investigation is recommended of the long-term effects of multiple pFUS+MB in clinical trials.


Assuntos
Córtex Cerebral/patologia , Córtex Cerebral/efeitos da radiação , Hipocampo/patologia , Hipocampo/efeitos da radiação , Microbolhas/efeitos adversos , Ultrassonografia/efeitos adversos , Animais , Histocitoquímica , Estudos Longitudinais , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley
17.
Proc Natl Acad Sci U S A ; 114(1): E75-E84, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994152

RESUMO

MRI-guided pulsed focused ultrasound (pFUS) combined with systemic infusion of ultrasound contrast agent microbubbles (MB) causes localized blood-brain barrier (BBB) disruption that is currently being advocated for increasing drug or gene delivery in neurological diseases. The mechanical acoustic cavitation effects of opening the BBB by low-intensity pFUS+MB, as evidenced by contrast-enhanced MRI, resulted in an immediate damage-associated molecular pattern (DAMP) response including elevations in heat-shock protein 70, IL-1, IL-18, and TNFα indicative of a sterile inflammatory response (SIR) in the parenchyma. Concurrent with DAMP presentation, significant elevations in proinflammatory, antiinflammatory, and trophic factors along with neurotrophic and neurogenesis factors were detected; these elevations lasted 24 h. Transcriptomic analysis of sonicated brain supported the proteomic findings and indicated that the SIR was facilitated through the induction of the NFκB pathway. Histological evaluation demonstrated increased albumin in the parenchyma that cleared by 24 h along with TUNEL+ neurons, activated astrocytes, microglia, and increased cell adhesion molecules in the vasculature. Infusion of fluorescent beads 3 d before pFUS+MB revealed the infiltration of CD68+ macrophages at 6 d postsonication, as is consistent with an innate immune response. pFUS+MB is being considered as part of a noninvasive adjuvant treatment for malignancy or neurodegenerative diseases. These results demonstrate that pFUS+MB induces an SIR compatible with ischemia or mild traumatic brain injury. Further investigation will be required before this approach can be widely implemented in clinical trials.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/fisiopatologia , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Sonicação/métodos , Ultrassonografia/métodos , Animais , Astrócitos/metabolismo , Moléculas de Adesão Celular/metabolismo , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Inflamação/patologia , Interleucina-1/metabolismo , Interleucina-18/metabolismo , Macrófagos/imunologia , Microglia/metabolismo , Doenças Neurodegenerativas/terapia , Tecido Parenquimatoso/patologia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
18.
Ultrasound Med Biol ; 40(9): 2113-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24857416

RESUMO

Bone loss can result from bed rest, space flight, spinal cord injury or age-related hormonal changes. Current bone loss mitigation techniques include pharmaceutical interventions, exercise, pulsed ultrasound targeted to bone and whole body vibration. In this study, we attempted to mitigate paralysis-induced bone loss by applying focused ultrasound to the midbelly of a paralyzed muscle. We employed a mouse model of disuse that uses onabotulinumtoxinA-induced paralysis, which causes rapid bone loss in 5 d. A focused 2 MHz transducer applied pulsed exposures with pulse repetition frequency mimicking that of motor neuron firing during walking (80 Hz), standing (20 Hz), or the standard pulsed ultrasound frequency used in fracture healing (1 kHz). Exposures were applied daily to calf muscle for 4 consecutive d. Trabecular bone changes were characterized using micro-computed tomography. Our results indicated that application of certain focused pulsed ultrasound parameters was able to mitigate some of the paralysis-induced bone loss.


Assuntos
Desmineralização Patológica Óssea/etiologia , Desmineralização Patológica Óssea/prevenção & controle , Músculo Esquelético/diagnóstico por imagem , Paralisia/complicações , Terapia por Ultrassom/métodos , Animais , Desmineralização Patológica Óssea/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tíbia/diagnóstico por imagem , Ultrassonografia , Microtomografia por Raio-X/métodos
19.
Stem Cells ; 31(11): 2551-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23922277

RESUMO

Stem cells are promising therapeutics for cardiovascular diseases, and i.v. injection is the most desirable route of administration clinically. Subsequent homing of exogenous stem cells to pathological loci is frequently required for therapeutic efficacy and is mediated by chemoattractants (cell adhesion molecules, cytokines, and growth factors). Homing processes are inefficient and depend on short-lived pathological inflammation that limits the window of opportunity for cell injections. Noninvasive pulsed focused ultrasound (pFUS), which emphasizes mechanical ultrasound-tissue interactions, can be precisely targeted in the body and is a promising approach to target and maximize stem cell delivery by stimulating chemoattractant expression in pFUS-treated tissue prior to cell infusions. We demonstrate that pFUS is nondestructive to murine skeletal muscle tissue (no necrosis, hemorrhage, or muscle stem cell activation) and initiates a largely M2-type macrophage response. We also demonstrate that local upregulation of chemoattractants in pFUS-treated skeletal muscle leads to enhance homing, permeability, and retention of human mesenchymal stem cells (MSC) and human endothelial precursor cells (EPC). Furthermore, the magnitude of MSC or EPC homing was increased when pFUS treatments and cell infusions were repeated daily. This study demonstrates that pFUS defines transient "molecular zip codes" of elevated chemoattractants in targeted muscle tissue, which effectively provides spatiotemporal control and tunability of the homing process for multiple stem cell types. pFUS is a clinically translatable modality that may ultimately improve homing efficiency and flexibility of cell therapies for cardiovascular diseases.


Assuntos
Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Ultrassom/métodos , Animais , Técnicas de Cultura de Células , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C3H , Modelos Animais , Músculo Esquelético/citologia , Músculo Esquelético/diagnóstico por imagem , Análise Espaço-Temporal , Células-Tronco/citologia , Células-Tronco/diagnóstico por imagem , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA