Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 31: 102302, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980548

RESUMO

Lupus nephritis (LN) is a major cause of morbidity and mortality among systemic lupus erythematosus patients. Glucocorticoids (GCs) are uniformly used in clinical LN management. Their notorious toxicities, however, have hampered the long-term clinical application. To circumvent GC side effects while maintaining their potent therapeutic efficacy, we have developed a macromolecular prodrug nanomedicine based on dexamethasone (ZSJ-0228). The focus of this study was to investigate its long-term efficacy and, most importantly, safety in the lupus-prone NZB/W F1 mouse. Monthly ZSJ-0228 treatment for five months significantly reduced the incidence of nephritis in NZB/W F1 mice with an improved survival rate. In contrast to treatment with dose equivalent daily free dexamethasone, long-term monthly ZSJ-0228 did not result in any measurable GC-associated side effects. With its outstanding efficacy and exceptional safety, it is anticipated that ZSJ-0228 may be a novel therapy for long-term clinical management of LN.


Assuntos
Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/metabolismo , Nanomedicina/métodos , Animais , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Incidência , Camundongos , Pró-Fármacos/uso terapêutico
2.
Nanomedicine ; 29: 102266, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679269

RESUMO

HPMA copolymer-based dexamethasone prodrug (P-Dex) and PEG-based dexamethasone prodrug (PEG-Dex, ZSJ-0228) were previously found to passively target the inflamed kidney and provide potent and sustained resolution of nephritis in NZB/WF1 lupus-prone mice. While both prodrug nanomedicines effectively ameliorate lupus nephritis, they have demonstrated distinctively different safety profiles. To explore the underlining mechanisms of these differences, we conducted a head-to-head comparative PK/BD study of P-Dex and PEG-Dex on NZB/WF1 mice. Overall, the systemic organ/tissue exposures to P-Dex and Dex released from P-Dex were found to be significantly higher than those of PEG-Dex. The high prodrug concentrations were sustained in kidney for only 24 h, which cannot explain their lasting therapeutic efficacy (>1 month). P-Dex showed sustained presence in liver, spleen and adrenal gland, while the presence of PEG-Dex in these organs was transient. This difference in PK/BD profiles may explain PEG-Dex' superior safety than P-Dex.


Assuntos
Dexametasona/química , Nefrite Lúpica/tratamento farmacológico , Nanopartículas/química , Polímeros/farmacologia , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacologia , Animais , Dexametasona/farmacologia , Modelos Animais de Doenças , Humanos , Rim/efeitos dos fármacos , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos NZB , Nanomedicina , Polímeros/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Baço/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA