Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000768

RESUMO

Large-format additive manufacturing (LFAM) is used to print large-scale polymer structures. Understanding the thermal and mechanical properties of polymers suitable for large-scale extrusion is needed for design and production capabilities. An in-house-built LFAM printer was used to print polyethylene terephthalate glycol with 30% carbon fiber (PETG CF30%) samples for thermomechanical characterization. Thermogravimetric analysis (TGA) shows that the samples were 30% carbon fiber by weight. X-ray microscopy (XRM) and porosity studies find 25% voids/volume for undried material and 1.63% voids/volume for dry material. Differential scanning calorimetry (DSC) shows a glass transition temperature (Tg) of 66 °C, while dynamic mechanical analysis (DMA) found Tg as 82 °C. The rheology indicated that PETG CF30% is a good printing material at 220-250 °C. Bending experiments show an average of 48.5 MPa for flexure strength, while tensile experiments found an average tensile strength of 25.0 MPa at room temperature. Comparison with 3D-printed PLA and PETG from the literature demonstrated that LFAM-printed PETG CF30% had a comparative high Young's modulus and had similar tensile strength. For design purposes, prints from LFAM should consider both material choice and print parameters, especially when considering large layer heights.

2.
ACS Biomater Sci Eng ; 8(2): 921-938, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029364

RESUMO

A potential load-bearing bone substitution and repair material, that is, carbon fiber (CF)-reinforced magnesium-doped hydroxyapatite (CF/Mg-HAs) composites with excellent mechanical performance and tailored biological properties, was constructed via the hydrothermal method and spark plasma sintering. A high-resolution transmission electron microscopy (TEM) was employed to characterize the nanostructure of magnesium-doped hydroxyapatite (Mg-HA). TEM images showed that the doping of Mg-induced distortions and dislocations in the hydroxyapatite lattice, resulting in decreased crystallinity and enhanced dissolution. Compressive strengths of 10% magnesium-doped hydroxyapatite (1Mg-HAs) and CF-reinforced 1Mg-HAs (CF/1Mg-HAs) were within the range of that of cortical bone. Compared with 1Mg-HAs, the fracture toughness of CF/1Mg-HAs increased by approximately 38%. The bioactivity, biocompatibility, and osteogenic induction properties of Mg-HAs and CF/Mg-HAs composites were evaluated in vitro using simulated body fluid (SBF) immersion, cell culture, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and expression of genes associated with osteogenesis. When Mg-HAs were immersed in SBF, Mg2+ continued to release for up to 21 days. Mg-HAs demonstrated a satisfactory ability to induce apatite formation in comparison with HAs. The cell proliferation and morphology on CF/1Mg-HAs were similar to those of 1Mg-HAs, suggesting that adding CF had no adverse effect on cellular activity. The expression levels of osteogenesis-related genes [osteocalcin (OPN), osteopontin (OCN), and runt-related transcription factor 2 (Runx2)] on 1Mg-HAs were significantly higher at days 3 and 7 than those on HAs and 0.5Mg-HAs groups. This finding suggests that a certain amount of Mg doping had beneficial influences in the different stages of osteogenic differentiation and could induce osteogenic differentiation of BMSCs. The new bone volume to total volume ratio of implanted 1Mg-HAs (30.9% ± 4.1%) and CF/1Mg-HAs (25.4% ± 5.4%) was remarkably higher than that of HAs (21.6% ± 3.9%). 1Mg-HAs and CF/1Mg-HAs tailored an ideal effect of new bone information and implant osseointegration. The excellent mechanical performance and tailored biological properties of CF/Mg-HAs were attributed to nano Mg-doped HA, CF reinforcing, refined microstructure, and controlled composition.


Assuntos
Durapatita , Magnésio , Carbono/farmacologia , Durapatita/química , Durapatita/farmacologia , Magnésio/farmacologia , Osteogênese , Suporte de Carga
3.
Polymers (Basel) ; 11(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835658

RESUMO

In this work, a novel melt extrusion method under synergy of extensional deformation and in-situ bubble stretching (ISBS) and corresponding apparatus were reported. The structure and working principle were introduced in detail. Polymer composites composed of high density polyethylene (HDPE)/ultrahigh molecular weight polyethylene (UHMWPE)/carbon fiber (CF) were prepared by using this new method. Effects of CF and Azodicarbonamide (AC) contents on composites' morphology, rheological, thermal, and mechanical properties were experimentally investigated. SEM results showed that the CFs dispersed evenly in the matrix when the AC content was relatively high. DSC results showed that co-crystallization of HDPE and UHMWPE occurred in the composites, and the Xc of the composites decreased with the addition of AC or under high CF loadings. TGA results showed that the thermostability of the composites increased markedly with increasing CF loading. Mechanical properties showed that tensile strength increased by 30% with 9 wt % CF and 0.6 wt % AC added. The results aforementioned indicate that the novel melt extrusion method is a green and effective way to prepare HDPE/UHMWPE/CF composites.

4.
Materials (Basel) ; 12(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866408

RESUMO

Due to the non-polar nature and low wettability of carbon fibers (CFs), the interfacial adhesion between CFs and the polyetheretherketone (PEEK) matrix is poor, and this has negative effects on the mechanical properties of CF/PEEK composites. In this work, we established a modification method to improve the interface between CFs and PEEK based chemical grafting of aminated polyetheretherketone (PEEK-NH2) on CFs to create an interfacial layer which has competency with the PEEK matrix. The changed chemical composition, surface morphology, surface energy, and interlaminar shear strength were investigated. After grafting, the interlaminar shear strength (ILSS) was improved by 33.4% due to the covalent bonds in the interface region, as well as having good compatibility between the interface modifier and PEEK. Finally, Dynamic Mechanical Analysis (DMA) and Scanning Electron Microscopy (SEM) observation also confirmed that the properties of the modified CF/PEEK composites interface were enhanced. This work is, therefore, a beneficial approach towards enhancing the mechanical properties of thermoplastic composites by controlling the interface between CFs and the PEEK matrix.

5.
Materials (Basel) ; 9(3)2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28773330

RESUMO

Nitric acid (HNO3)-treated carbon fiber (CF) rich in hydrophilic groups was applied as a cell-immobilized carrier for xylitol fermentation. Using scanning electron microscopy, we characterized the morphology of the HNO3-treated CF. Additionally, we evaluated the immobilized efficiency (IE) of Candida tropicalis and xylitol fermentation yield by investigating the surface properties of nitric acid treated CF, specifically, the acidic group content, zero charge point, degree of moisture and contact angle. We found that adhesion is the major mechanism for cell immobilization and that it is greatly affected by the hydrophilic-hydrophilic surface properties. In our experiments, we found 3 hto be the optimal time for treating CF with nitric acid, resulting in an improved IE of Candida tropicalis of 0.98 g∙g-1 and the highest xylitol yield and volumetric productivity (70.13% and 1.22 g∙L-1∙h-1, respectively). The HNO3-treated CF represents a promising method for preparing biocompatible biocarriers for multi-batch fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA