Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Cells ; 13(20)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39451235

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) channels have been associated with numerous pulmonary pathologies, including hypertension, asthma, and acute lung injury. However, their role in the alveolar epithelium remains unclear. We performed impedance-based resistance measurements in primary differentiated alveolar epithelial type I (AT1) cells from wild-type (WT) and TRPV4-deficient (TRPV4-/-) C57/BL6J mice to detect changes in AT1 barrier integrity upon TRPV4 activation. Both pharmacological (GSK1016790A) and a low pH-driven activation of TRPV4 were quantified, and the downstream effects on adherens junctions were assessed through the Western blotting of epithelial cadherin (E-cadherin) protein levels. Importantly, a drop in pH caused a rapid decrease in AT1 barrier resistance and increased the formation of a ~35 kDa E-cadherin C-terminal fragment, with both effects significantly reduced in TRPV4-/- AT1 cells. Similarly, the pharmacological activation of TRPV4 in AT1 cells triggered an immediate transient loss of barrier resistance and the formation of the same E-cadherin fragment, which was again diminished by TRPV4 deficiency. Moreover, TRPV4-mediated E-cadherin cleavage was significantly reduced by GI254023X, an antagonist of a disintegrin and metalloprotease 10 (ADAM10). Our results confirm the role of TRPV4 in regulating alveolar epithelial barrier permeability and provide insight into a novel signaling pathway by which TRPV4-induced Ca2+ influx stimulates metalloprotease-driven ectodomain shedding.


Assuntos
Proteína ADAM10 , Caderinas , Camundongos Endogâmicos C57BL , Canais de Cátion TRPV , Animais , Caderinas/metabolismo , Canais de Cátion TRPV/metabolismo , Camundongos , Proteína ADAM10/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos Knockout , Leucina/farmacologia , Leucina/análogos & derivados , Secretases da Proteína Precursora do Amiloide/metabolismo , Concentração de Íons de Hidrogênio , Junções Aderentes/metabolismo , Sulfonamidas/farmacologia , Alvéolos Pulmonares/metabolismo , Cálcio/metabolismo , Dipeptídeos , Ácidos Hidroxâmicos
2.
J Biomed Mater Res B Appl Biomater ; 112(8): e35462, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39133764

RESUMO

Investigating the influence of different cellular mechanical and physical properties on cells in vitro is important for assessing cellular activities like differentiation, proliferation, and migration. Evaluating the mechanical response of the cells lodged on a scaffold due to variations in substrate roughness, substrate elasticity, fluid flow, and the shapes of the cells is the main goal of the study. In this comprehensive analysis, a combination of the fluid structure interaction method and the submodeled finite element technique was employed to anticipate the mechanical responses across various cells at the interface between cells and the substrate. Fluid inlet velocity, substrate roughness, and substrate material were varied in this analysis. Different cell shapes were considered along with various components such as cell membrane, cytoplasm, nucleus, and cytoskeletons. This analysis shows the effect of these individual parameters on the elastic strain and strain energy density of cells at the cell-substrate interface. The results highlight that substrate roughness has a more significant impact on the mechanical response of cells at the interface than substrate elasticity. However, effect of the substrate elasticity becomes crucial for extremely soft substrate materials. The results of this research can be applied to identify the optimal parameters for fluid flow and create a suitable condition for cell culture.


Assuntos
Modelos Biológicos , Humanos , Perfusão , Análise de Elementos Finitos , Elasticidade , Estresse Mecânico
3.
Biosensors (Basel) ; 14(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39194604

RESUMO

Microfluidics have revolutionized cell culture by allowing for precise physical and chemical environmental control. Coupled with electrodes, microfluidic cell culture can be activated or have its changes sensed in real-time. We used our previously developed reliable and stable microfluidic device for cell growth and monitoring to design, fabricate, and characterize a whole-channel impedance-based sensor and used it to systematically assess the electrical and electrochemical influences of microfluidic channel boundaries coupled with varying electrode sizes, distances, coatings, and cell coverage. Our investigation includes both theoretical and experimental approaches to investigate how design parameters and insulating boundary conditions change impedance characteristics. We examined the system with various solutions using a frequency range of 0.5 Hz to 1 MHz and a modulation voltage of 50 mV. The results show that impedance is directly proportional to electrode distance and inversely proportional to electrode coating, area, and channel size. We also demonstrate that electrode spacing is a dominant factor contributing to impedance. In the end, we summarize all the relationships found and comment on the appropriateness of using this system to investigate barrier cells in blood vessel models and organ-on-a-chip devices. This fundamental study can help in the careful design of microfluidic culture constructs and models that require channel geometries and impedance-based biosensing.


Assuntos
Técnicas Biossensoriais , Impedância Elétrica , Eletrodos , Dispositivos Lab-On-A-Chip , Microfluídica , Humanos , Desenho de Equipamento , Técnicas Analíticas Microfluídicas
4.
Sci Rep ; 14(1): 18862, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143171

RESUMO

Cell adhesion to the extracellular matrix and its natural outcome of cell spreading, along with the maintenance of barrier activity, are essential behaviors of epithelial cells, including retinal pigment epithelium (RPE). Disruptions in these characteristics can result in severe vision-threatening diseases such as diabetic macular edema and age-related macular degeneration. However, the precise mechanisms underlying how RPE cells regulate their barrier integrity and cell spreading are not fully understood. This study aims to elucidate the relative importance of upper glycolytic components in governing these cellular behaviors of RPE cells. Electric Cell-Substrate Impedance Sensing (ECIS) technology was utilized to assess in real-time the effects of targeting various upper glycolytic enzymes on RPE barrier function and cell spreading by measuring cell resistance and capacitance, respectively. Specific inhibitors used included WZB117 for Glut1 inhibition, Lonidamine for Hexokinase inhibition, PFK158 for PFKFB3/PFK axis inhibition, and TDZD-8 for Aldolase inhibition. Additionally, the viability of RPE cells was evaluated using a lactate dehydrogenase (LDH) cytotoxicity assay. The most significant decrease in electrical resistance and increase in capacitance of RPE cells were observed due to dose-dependent inhibition of Glut1 using WZB117, as well as Aldolase inhibition with TDZD-8. LDH level analysis at 24-72 h post-treatment with WZB117 (1 and 10 µM) or TDZD-8 (1 µM) showed no significant difference compared to the control, indicating that the disruption of RPE functionality was not attributed to cell death. Lastly, inhibition of other upper glycolytic components, including PFKFB3/PFK with PFK158 or Hexokinase with Lonidamine, did not significantly affect RPE cell behavior. This study provides insights into the varied roles of upper glycolytic components in regulating the functionality of RPE cells. Specifically, it highlights the critical roles of Glut1 and Aldolase in preserving barrier integrity and promoting RPE cell adhesion and spreading. Such understanding will guide the development of safe interventions to treat RPE cell dysfunction in various retinal disorders.


Assuntos
Glicólise , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Glicólise/efeitos dos fármacos , Humanos , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Impedância Elétrica , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores
5.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000992

RESUMO

Electric cell-substrate impedance sensing has been used to measure transepithelial and transendothelial impedances of cultured cell layers and extract cell parameters such as junctional resistance, cell-substrate separation, and membrane capacitance. Previously, a three-path cell-electrode model comprising two transcellular pathways and one paracellular pathway was developed for the impedance analysis of MDCK cells. By ignoring the resistances of the lateral intercellular spaces, we develop a simplified three-path model for the impedance analysis of epithelial cells and solve the model equations in a closed form. The calculated impedance values obtained from this simplified cell-electrode model at frequencies ranging from 31.25 Hz to 100 kHz agree well with the experimental data obtained from MDCK and OVCA429 cells. We also describe how the change in each model-fitting parameter influences the electrical impedance spectra of MDCK cell layers. By assuming that the junctional resistance is much smaller than the specific impedance through the lateral cell membrane, the simplified three-path model reduces to a two-path model, which can be used for the impedance analysis of endothelial cells and other disk-shaped cells with low junctional resistances. The measured impedance spectra of HUVEC and HaCaT cell monolayers nearly coincide with the impedance data calculated from the two-path model.


Assuntos
Impedância Elétrica , Células Endoteliais , Células Epiteliais , Microeletrodos , Cães , Animais , Humanos , Células Madin Darby de Rim Canino , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana , Linhagem Celular , Modelos Biológicos
6.
Front Med (Lausanne) ; 11: 1412891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021821

RESUMO

Introduction: Patients with cirrhosis undergoing liver transplantation frequently exhibit systemic inflammation, coagulation derangements, and edema, indicating endothelial dysfunction. This syndrome may worsen after ischemia-reperfusion injury of the liver graft, coincident with organ dysfunction that worsens patient outcomes. Little is known about changes in endothelial permeability during liver transplantation. We hypothesized that sera from these patients would increase permeability in cultured human endothelial cells ex vivo. Methods: Adults with cirrhosis presenting for liver transplantation provided consent for blood collection during surgery. Sera were prepared at five time points spanning the entire operation. The barrier function of human pulmonary microvascular endothelial cells in culture was assessed by transendothelial resistance measured using the ECIS ZΘ system. Confluent cells from two different endothelial cell donors were stimulated with human serum from liver transplant patients. Pooled serum from healthy men and purified inflammatory agonists served as controls. The permeability response to serum was quantified as the area under the normalized resistance curve. Responses were compared between time points and analyzed for associations with clinical characteristics of liver transplant patients and their grafts. Results: Liver transplant sera from all time points during surgery-induced permeability in both endothelial cell lines. The magnitude of permeability change was heterogeneous between patients, and there were differences in the effects of sera on the two endothelial cell lines. In one of the cell lines, the severity of liver disease was associated with greater permeability at the start of surgery. In the same cell line, serum collected 15 min after liver reperfusion induced significantly more permeability as compared to that collected at the start of surgery. Early postreperfusion sera from patients undergoing living donor transplants induced more permeability than sera from deceased donor transplants. Sera from two exemplary cases of patients on preoperative dialysis, and one patient with an unexpectedly long warm ischemia time of the liver graft, induced exaggerated and prolonged endothelial permeability. Discussion: Serum from patients with cirrhosis undergoing liver transplantation induces permeability of cultured human pulmonary microvascular endothelial cells. Increased endothelial permeability during liver transplantation may contribute to organ injury and present a target for future therapeutics.

7.
Int J Biol Macromol ; 274(Pt 2): 133418, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936577

RESUMO

Microfluidic cell encapsulation has provided a platform for studying the behavior of individual cells and has become a turning point in single-cell analysis during the last decade. The engineered microenvironment, along with protecting the immune response, has led to increasingly presenting the results of practical and pre-clinical studies with the goals of disease treatment, tissue engineering, intelligent control of stem cell differentiation, and regenerative medicine. However, the significance of cell-substrate interaction versus cell-cell communications in the microgel is still unclear. In this study, monodisperse alginate microgels were generated using a flow-focusing microfluidic device to determine how the cell microenvironment can control human bone marrow-derived mesenchymal stem cells (hBMSCs) viability, proliferation, and biomechanical features in single-cell droplets versus multi-cell droplets. Collected results show insufficient cell proliferation (234 % and 329 %) in both single- and multi-cell alginate microgels. Alginate hydrogels supplemented with poly-l-lysine (PLL) showed a better proliferation rate (514 % and 780 %) in a comparison of free alginate hydrogels. Cell stiffness data illustrate that hBMSCs cultured in alginate hydrogels have higher membrane flexibility and migration potency (Young's modulus equal to 1.06 kPa), whereas PLL introduces more binding sites for cell attachment and causes lower flexibility and migration potency (Young's modulus equal to 1.83 kPa). Considering that cell adhesion is the most important parameter in tissue engineering, in which cells do not run away from a 3D substrate, PLL enhances cell stiffness and guarantees cell attachments. In conclusion, cell attachment to PLL-mediated alginate hydrogels is crucial for cell viability and proliferation. It suggests that cell-cell signaling is good enough for stem cell viability, but cell-PLL attachment alongside cell-cell signaling is crucial for stem cell proliferation and self-renewal.


Assuntos
Alginatos , Adesão Celular , Proliferação de Células , Células-Tronco Mesenquimais , Microgéis , Polilisina , Alginatos/química , Alginatos/farmacologia , Polilisina/química , Polilisina/farmacologia , Humanos , Adesão Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/efeitos dos fármacos , Microgéis/química , Microfluídica/métodos , Comunicação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Encapsulamento de Células/métodos , Análise de Célula Única , Autorrenovação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
8.
Biosens Bioelectron ; 259: 116385, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759310

RESUMO

Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.


Assuntos
Técnicas Biossensoriais , Membrana Celular , Técnicas Eletroquímicas , Compostos de Estanho , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Animais , Ratos , Células PC12 , Compostos de Estanho/química , Técnicas Eletroquímicas/métodos , Membrana Celular/química , Adesão Celular , Vibração , Propriedades de Superfície , Desenho de Equipamento
9.
J Appl Stat ; 51(6): 1210-1226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628445

RESUMO

We examine the use of time series data, derived from Electric Cell-substrate Impedance Sensing (ECIS), to differentiate between standard mammalian cell cultures and those infected with a mycoplasma organism. With the goal of easy visualization and interpretation, we perform low-dimensional feature-based classification, extracting application-relevant features from the ECIS time courses. We can achieve very high classification accuracy using only two features, which depend on the cell line under examination. Initial results also show the existence of experimental variation between plates and suggest types of features that may prove more robust to such variation. Our paper is the first to perform a broad examination of ECIS time course features in the context of detecting contamination; to combine different types of features to achieve classification accuracy while preserving interpretability; and to describe and suggest possibilities for ameliorating plate-to-plate variation.

10.
Curr Res Food Sci ; 8: 100736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681527

RESUMO

In this study, an in vitro co-culture model using an electric cell-substrate impedance sensing system (ECIS) for testing the impact of real-time fermentation of non-digestible carbohydrates (NDCs) by the intestinal microbiota on gut barrier function was established. We applied Lactobacillus plantarum WCFS1 as a model intestinal bacterium and alginate-pectin as immobilization polymers as well as a source of NDCs to determine the impact of pectin fermentation on the barrier function of T84 gut epithelial cells. In the first design, L. plantarum WCFS1 was encapsulated in an alginate capsule followed by embedding in an agar layer to mimic a firm mucus layer that might be present in the colon. In this experimental design, the presence of the agar layer interfered with the transepithelial electrical resistance (TEER) measurement of T84 cells. Subsequently, we removed the agar layer and used encapsulated bacteria in an alginate gel and found that the TEER measurement was adequate. The encapsulation of the L. plantarum WCFS1 does avoid direct contact with cells. Also, the encapsulation system allows higher amounts of packing densities of L. plantarum WCFS1 in a limited space which can limit the oxygen concentration within the capsule and therefore create anaerobic conditions. To test this design, T84 cells were co-incubated with L. plantarum alginate-capsules supplemented with graded loads of fermentable pectin (0, 4, and 8 mg/ml per capsule) to investigate the effect of pectin fermentation on gut barrier function. We observed that as the pectin content in the L. plantarum capsules increased, pectin showed a gradually stronger protective effect on the TEER of the gut epithelium. This could partly be explained by enhanced SCFA production as both lactate and acetate were enhanced in L. plantarum containing alginate capsules with 8 mg/ml pectin. Overall, this newly designed in vitro co-culture model allows for studying the impact of bacteria-derived fermentation products but also for studying the direct effects of NDCs on gut barrier function in a relatively high-throughput way.

11.
Biomater Adv ; 157: 213751, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219418

RESUMO

In vascular tissue engineering, formation of stable endothelial cell-cell and cell-substrate adhesions is essential for maintaining long-term patency of the tissue-engineered vascular grafts (TEVGs). In this study, sheet-like aligned fibrous substrates of poly(l-lactide-co-caprolactone) (PLCL) were prepared by electrospinning to provide basement membrane-resembling structural support to endothelial cells (ECs). Cyclic stretching at physiological and pathological levels was then applied to human umbilical vein endothelial cells (HUVECs) cultured on chosen fibrous substrate using a force-loading device, from which effects of the cyclic stretching on cell-cell and cell-substrate adhesions were examined. It was found that applying uniaxial 1 Hz cyclic stretch at physiological levels (5 % and 10 % elongation) strengthened the cell-cell junctions, thus leading to improved structural integrity, functional expression and resistance to thrombin-induced damaging impacts in the formed endothelial layer. The cell-cell junctions were disrupted at pathological level (15 % elongation) cyclic stretching, which however facilitated the formation of focal adhesions (FAs) at cell-substrate interface. Mechanistically, the effects of cyclic stretching on endothelial cell-cell and cell-substrate adhesions were identified to be correlated with the RhoA/ROCK signaling pathway. Results from this study highlight the relevance between applying dynamic mechanical stimulation and maintaining the structural integrity of the formed endothelial layer, and implicate a necessity to implement appropriate dynamic mechanical training (i.e., preconditioning) to obtain tissue-engineered blood vessels with long-term patency post-implantation.


Assuntos
Adesões Focais , Junções Intercelulares , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Adesão Celular , Adesões Focais/fisiologia , Fenômenos Mecânicos
12.
Biomaterials ; 304: 122430, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100907

RESUMO

Nanoparticles of biological origin exhibit many unique properties in biological applications due to their exquisite structure, specific composition, and natural biological functionality. In this study, we obtained lysosomes from three distinct cell types (one normal cell and two activated immune cells) and demonstrated their potential as natural therapeutic nanoparticles for tumor therapy. In vitro experiments revealed that these lysosomes maintained their structural integrity, were well-distributed, and exhibited significant biological activity, which effectively induced cancer cell death by generating ROS and disrupting biological substrates. Additionally, in vivo investigations showed that these lysosomes could accumulate in tumor tissues after intravenous administration and exhibited exceptional therapeutic effects through the destruction of tumor blood vessels and the degradation of immunosuppressive proteins, with complete tumor disappearance in a single treatment. This research on the utilization of bioactive lysosomes for tumor treatment provides valuable insights into drug development and tumor treatment, particularly when conventional approaches have proven ineffective.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Morte Celular , Nanopartículas/química , Linhagem Celular Tumoral
13.
Biologicals ; 83: 101692, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37442044

RESUMO

Productivity and stability of Pseudorabies virus (PRV) are critical for the manufacture and storage of live attenuated pseudorabies vaccine. Trehalose is commonly used as a cryoprotectant to stabilize organisms during freezing and lyophilization. Trehalose transporter 1 (Tret1), derived from Polypedilum vanderplanki, can deliver trehalose with a reversible transporting direction. In this study, we demonstrated that productivity and stability of PRV proliferated in recombinant ST cells with stable expression of Tret1 were enhanced. As a result, a five-fold increase of intracellular trehalose amount was observed, and the significant increase of progeny viral titer was achieved in recombinant cells with the addition of 20 mM trehalose. Particularly, after storage for 8 weeks at 20 °C, the loss of viral titer was 0.8 and 1.7 lgTCID50/mL lower than the control group with or without the addition of trehalose. Additionally, the freeze-thaw resistance at -20 °C and -70 °C of PRV was significantly enhanced. Furthermore, according to standard international protocols, a series of tests, including karyotype analysis, tumorigenicity, and the ability of proliferation PRV, were conducted. Our results demonstrated that the recombinant ST cell with Tret1 is a promising cell substrate and has a high potential for producing more stable PRV for the live attenuated vaccine.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Animais , Suínos , Herpesvirus Suídeo 1/metabolismo , Trealose/metabolismo , Pseudorraiva/prevenção & controle , Congelamento , Doenças dos Suínos/prevenção & controle
14.
Cell Mol Bioeng ; 16(3): 205-218, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37456789

RESUMO

Introduction: Cancer metastasis is associated with increased cancer incidence, recurrence, and mortality. The role of cell contact guidance behaviors in cancer metastasis has been recognized but has not been elucidated yet. Methods: The contact guidance behavior of cancer cells in response to topographical constraints is identified using microgrooved substrates with varying dimensions at the mesoscopic scale. Then, the cell morphology is determined to quantitatively analyze the effects of substrate dimensions on cells contact guidance. Cell density and migrate velocity signatures within the cellular population are determined using time-lapse phase-contrast microscopy. The effect of soluble factors concentration is determined by culturing cells upside down. Then, the effect of cell-substrate interaction on cell migration is investigated using traction force microscopy. Results: With increasing depth and decreasing groove width, cell elongation and alignment are enhanced, while cell spreading is inhibited. Moreover, cells display preferential distribution on the ridges, which is found to be more pronounced with increasing depth and groove width. Determinations of cell density and migration velocity signatures reveal that the preferential distribution on ridges is caused by cell upward migration. Combined with traction force measurement, we find that migration toward ridges is governed by different cell-substrate interactions between grooves and ridges caused by geometrical constraints. Interestingly, the upward migration of cells at the mesoscopic scale is driven by entropic maximization. Conclusions: The mesoscopic cell contact guidance mechanism based on the entropic force driven theory provides basic support for the study of cell alignment and migration along healthy tissues with varying size, thereby aiding in the prediction of cancer metastasis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00766-y.

15.
Bull Math Biol ; 85(9): 79, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460873

RESUMO

When cells are seeded on a cyclically deformed substrate like silicon, they tend to reorient their major axis in two ways: either perpendicular to the main stretching direction, or forming an oblique angle with it. However, when the substrate is very soft such as a collagen gel, the oblique orientation is no longer observed, and the cells align either along the stretching direction, or perpendicularly to it. To explain this switch, we propose a simplified model of the cell, consisting of two elastic elements representing the stress fiber/focal adhesion complexes in the main and transverse directions. These elements are connected by a torsional spring that mimics the effect of crosslinking molecules among the stress fibers, which resist shear forces. Our model, consistent with experimental observations, predicts that there is a switch in the asymptotic behaviour of the orientation of the cell determined by the stiffness of the substratum, related to a change from a supercritical bifurcation scenario, whereby the oblique configuration is stable for a sufficiently large stiffness, to a subcritical bifurcation scenario at a lower stiffness. Furthermore, we investigate the effect of cell elongation and find that the region of the parameter space leading to an oblique orientation decreases as the cell becomes more elongated. This implies that elongated cells, such as fibroblasts and smooth muscle cells, are more likely to maintain an oblique orientation with respect to the main stretching direction. Conversely, rounder cells, such as those of epithelial or endothelial origin, are more likely to switch to a perpendicular or parallel orientation on soft substrates.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Elasticidade , Colágeno , Fibras de Estresse/fisiologia , Estresse Mecânico
16.
Cancers (Basel) ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37370693

RESUMO

Chimeric antigen receptor (CAR)-modified T cells brought a paradigm shift in the treatment of chemotherapy-resistant lymphomas. Conversely, clinical experience with CAR T cells targeting solid tumors has been disheartening, indicating the necessity of their molecular-level optimization. While incorporating CD28 or 41BB costimulatory domains into CARs in addition to the CD3z signaling domain improved the long-term efficacy of T cell products, their influence on early tumor engagement has yet to be elucidated. We studied the antigen-independent self-association and membrane diffusion kinetics of first- (.z), second- (CD28.z, 41BB.z), and third- (CD28.41BB.z) generation HER2-specific CARs in the resting T cell membrane using super-resolution AiryScan microscopy and fluorescence correlation spectroscopy, in correlation with RoseTTAFold-based structure prediction and assessment of oligomerization in native Western blot. While .z and CD28.z CARs formed large, high-density submicron clusters of dimers, 41BB-containing CARs formed higher oligomers that assembled into smaller but more numerous membrane clusters. The first-, second-, and third-generation CARs showed progressively increasing lateral diffusion as the distance of their CD3z domain from the membrane plane increased. Confocal microscopy analysis of immunological synapses showed that both small clusters of highly mobile CD28.41BB.z and large clusters of less mobile .z CAR induced more efficient CD3ζ and pLck phosphorylation than CD28.z or 41BB.z CARs of intermediate mobility. However, electric cell-substrate impedance sensing revealed that the CD28.41BB.z CAR performs worst in sequential short-term elimination of adherent tumor cells, while the .z CAR is superior to all others. We conclude that the molecular structure, membrane organization, and mobility of CARs are critical design parameters that can predict the development of an effective immune synapse. Therefore, they need to be taken into account alongside the long-term biological effects of costimulatory domains to achieve an optimal therapeutic effect.

17.
BMC Res Notes ; 16(1): 93, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264464

RESUMO

OBJECTIVE: Retinoic acid (RA) is known to transition proliferating SH-SY5Y neuroblastoma cells towards functional neurons. However, the activity of RA is restricted due to its photolability where any findings from prolonged time course observations using microscopy may alter outcomes. The aim of the study was to establish a real-time, long-term (9-day) protocol for the screening of differentiation events using Electrical cell-substrate impedance sensing (ECIS). RESULTS AND DISCUSSION: A differentiation baseline for SH-SY5Y cells was established. Cells were seeded and exposed to repeated spikes of RA using the xCELLigence real-time cell analyser single plate (RTCA-SP) for real-time monitoring and identification of differentiation activity over a 9 day period in order to be more representative of differentiation over a prolonged timeline. Specific features associated with differentiation (growth inhibition, neurite outgrowths) were confirmed by end-point analysis. RA-induced growth inhibition and assumed phenotypic changes (i.e. neurite outgrowth) were identified by the xCELLigence analysis and further confirmed by end-point metabolic and phenotypic assays. Change in cellular morphology and neurite outgrowth length was identified by end-point fluorescence detection followed by computational analysis. Based on this it was possible to identify SH-SY5Y phenotypic differentiation with distinct phases observed over 9 days using Electric cell-substrate impedance sensing (ECIS) cell index traces providing a path to application in larger scale neurotrophic factor screening using this scalable technology.


Assuntos
Neuroblastoma , Tretinoína , Humanos , Tretinoína/farmacologia , Impedância Elétrica , Fluxo de Trabalho , Linhagem Celular Tumoral , Neurogênese , Diferenciação Celular
18.
Biomater Res ; 27(1): 55, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264479

RESUMO

Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.

19.
J Mech Behav Biomed Mater ; 144: 105940, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37300993

RESUMO

Improvement of cell migration by the nano-topographical modification of implant surface can directly or indirectly accelerate wound healing and osseointegration between bone and implant. Therefore, modification of the implant surface was done with TiO2 nanorod (NR) arrays to develop a more osseointegration-friendly implant in this study. Modulating the migration of a cell, adhered to a scaffold, by the variations of NR diameter, density and tip diameter in vitro is the primary objective of the study. The fluid structure interaction method was used, followed by the submodelling technique in this multiscale analysis. After completing a simulation over a global model, fluid structure interaction data was applied to the sub-scaffold finite element model to predict the mechanical response over cells at the cell-substrate interface. Special focus was given to strain energy density at the cell interface as a response parameter due to its direct correlation with the migration of an adherent cell. The results showed a huge rise in strain energy density after the addition of NRs on the scaffold surface. It also highlighted that variation in NR density plays a more effective role than the variation in NR diameter to control cell migration over a substrate. However, the effect of NR diameter becomes insignificant when the NR tip was considered. The findings of this study could be used to determine the best nanostructure parameters for better osseointegration.


Assuntos
Nanotubos , Titânio , Titânio/química , Nanotubos/química , Osseointegração , Próteses e Implantes
20.
Ecotoxicol Environ Saf ; 262: 115147, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37343485

RESUMO

Nanoplastics smaller than 1 µm accumulate as anthropogenic material in the food chain, but only little is known about their uptake and possible effects on potentially strongly exposed cells of the small intestine. The aim of the study was to observe the uptake of 100 nm polystyrene nanoplastics into a non-tumorigenic small intestine cell culture model (IPEC-J2 cells) and to monitor the effects on cell growth and gene regulation, compared to a 100 nm non-plastic silica nanoparticle reference. The intracellular uptake of both types of nanoparticles was proven via (confocal) fluorescence microscopy and complemented with transmission electron microscopy. Fluorescence microscopy showed a growth phase-dependent uptake of nanoparticles into the cells, hence further experiments included different time points related to epithelial closure, determined via electric cell substrate impedance sensing. No retardations in epithelial closure of cells after treatment with polystyrene nanoparticles could be found. In contrast, epithelial cell closure was partly negatively influenced by silica nanoparticles. An increased production of organic nanoparticles, like extracellular vesicles, was not measurable via nanoparticle tracking analysis. An assessment of messenger RNA by next generation sequencing and subsequent pathway analysis revealed that the TP53 pathway was influenced significantly by the polystyrene nanoparticle treatment. In both treatments, dysregulated mRNAs were highly enriched in the NOTCH signaling pathway compared to the non-particle control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA