Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 13(2): 148-58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26513395

RESUMO

In the U.S., most industrial hygiene practitioners continue to rely on the closed-face cassette (CFC) to assess worker exposures to hazardous dusts, primarily because ease of use, cost, and familiarity. However, mass concentrations measured with this classic sampler underestimate exposures to larger particles throughout the inhalable particulate mass (IPM) size range (up to aerodynamic diameters of 100 µm). To investigate whether the current 37-mm inlet cap can be redesigned to better meet the IPM sampling criterion, computational fluid dynamics (CFD) models were developed, and particle sampling efficiencies associated with various modifications to the CFC inlet cap were determined. Simulations of fluid flow (standard k-epsilon turbulent model) and particle transport (laminar trajectories, 1-116 µm) were conducted using sampling flow rates of 10 L min(-1) in slow moving air (0.2 m s(-1)) in the facing-the-wind orientation. Combinations of seven inlet shapes and three inlet diameters were evaluated as candidates to replace the current 37-mm inlet cap. For a given inlet geometry, differences in sampler efficiency between inlet diameters averaged less than 1% for particles through 100 µm, but the largest opening was found to increase the efficiency for the 116 µm particles by 14% for the flat inlet cap. A substantial reduction in sampler efficiency was identified for sampler inlets with side walls extending beyond the dimension of the external lip of the current 37-mm CFC. The inlet cap based on the 37-mm CFC dimensions with an expanded 15-mm entry provided the best agreement with facing-the-wind human aspiration efficiency. The sampler efficiency was increased with a flat entry or with a thin central lip adjacent to the new enlarged entry. This work provides a substantial body of sampling efficiency estimates as a function of particle size and inlet geometry for personal aerosol samplers.


Assuntos
Poluentes Ocupacionais do Ar/análise , Desenho de Equipamento , Hidrodinâmica , Tamanho da Partícula , Movimentos do Ar , Poeira , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Modelos Teóricos , Estados Unidos
2.
J Occup Environ Hyg ; 12(3): 199-204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25337937

RESUMO

The current method for sampling aerosols using the 37-mm closed-face cassette (CFC) sampler is based on the orientation of the cassette at ∼45° from horizontal. There is some concern as to whether this method is appropriate and may be underestimating exposures. An alternative orientation at ∼0° (horizontal) has been discussed. This research compared the CFC's orientation at 45° from horizontal to the proposed orientation at horizontal, 0° in a controlled laboratory setting. The particles used in this study were fused alumina oxide in four sizes, approximately 9.5 µm, 12.8 µm, 18 µm, and 44.3 µm in aerodynamic diameter. For each test, one aerosol was dispersed in a wind tunnel operating at 0.2 m/s with samplers mounted in the breathing zone of a rotating mannequin. A sampling event consisted of four pairs of samplers, placed side by side (one pair at 45° and another at 0° cassette orientation), and exposed for a period of 45 minutes. A total of 12 sampling events, 3 sample events per particle size, were conducted with a total of 94 samples collected. Mass concentration measurements were compared to assess the relationship between the sampler orientations of the cassettes. In addition, the relationship between the mass collected on the cassette filter and on the interior walls of the cassette was also assessed. The results indicated that there was no significant difference between the measured concentrations based on the orientation of the CFCs. The amount of mass collected on the interior walls of the cassettes was relatively low (<5%) compared to expected (up to 100%) wall losses for both orientations.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise , Aerossóis/análise , Movimentos do Ar , Óxido de Alumínio/análise , Monitoramento Ambiental/instrumentação , Filtração/instrumentação , Manequins
3.
Ann Occup Hyg ; 59(4): 504-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25535181

RESUMO

A set of 270 bioaerosol samples was taken from 15 composting facilities using polystyrene closed-face filter cassettes (CFCs). The objective was to measure the quantity of endotoxin deposits on the inner surfaces of the cassettes (sometimes referred to as 'wall deposits'). The results show that endotoxins are deposited on the inner surfaces of the CFCs through sampling and/or handling of samples. The quantity of endotoxins measured on inner surfaces range between 0.05 (the limit of detection of the method) and 3100 endotoxin units per cassette. The deposits can represent a large and variable percentage of the endotoxins sampled. More than a third of the samples presented a percentage of inner surface deposits >40% of the total quantity of endotoxins collected (filter + inner surfaces). Omitting these inner surface deposits in the analytical process lead to measurement errors relative to sampling all particles entering the CFC sampler, corresponding to a developing consensus on matching the inhalable particulate sampling convention. The result would be underestimated exposures and could affect the decision as to whether or not a result is acceptable in comparison to airborne concentration limits defined in terms of the inhalability convention. The results of this study suggest including the endotoxins deposited on the inner surfaces of CFCs during analysis. Further researches are necessary to investigate endotoxin deposits on the inner cassette surfaces in other working sectors.


Assuntos
Aerossóis/análise , Endotoxinas/análise , Monitoramento Ambiental/instrumentação , Instalações de Eliminação de Resíduos , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Filtração , Exposição Ocupacional/análise , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA