Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Sci Total Environ ; 950: 175136, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39084374

RESUMO

Precise and rapid methods are needed to improve monitoring approaches of L. pneumophila (Lp) in cooling towers (CTs) to allow timely operational adjustments and prevent outbreaks. The performance of liquid culture (ASTM D8429-21) and an online qPCR device were first compared to conventional filter plate culture (ISO 11731-2017), qPCR and semi-automated qPCR at three spiked concentrations of Lp (serogroup 1) validated by flow cytometry (total/viable cell count). The most accurate was qPCR, followed by liquid culture, online and semi-automated qPCR, and lastly, by a significant margin, filter plate culture. An industrial CT system was monitored using liquid and direct plate culture by the facility, qPCR and online qPCR. Direct plate and liquid culture results agreed at regulatory sampling point, supporting the use of the faster liquid culture for monitoring culturable Lp. During initial operation, qPCR and online qPCR results were within one log of culture at the primary pump before deviating after first cleaning. Other points revealed high spatial variability of Lp. The secondary pumps and chiller had the most positivity and highest concentrations by both qPCR and liquid culture compared to the basin and infeed tank. Altogether, this suggests that results from monthly compliance sampling at a single location with plate culture are not representative of Lp risks in this CT due to the high temporal and spatial variability. The primary pump, rather than the CT basin, should be designated for sampling, as it is representative of the health risk. An annual multi point survey of the system should be conducted to identify and target Lp hot spots. Generally, a combination of liquid culture for compliance and frequent qPCR for process control provides a more agile and robust monitoring scheme than plate culture alone, enabling early treatment adjustments, due to lower limit of detection (LOD) and turnover time.


Assuntos
Monitoramento Ambiental , Legionella pneumophila , Microbiologia da Água , Monitoramento Ambiental/métodos , Ar Condicionado , Reação em Cadeia da Polimerase em Tempo Real
2.
J Environ Manage ; 367: 121949, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39083949

RESUMO

When water supply restrictions increasingly escalate to water supply risks, developing strategies to minimize the water footprint of wet cooling systems becomes crucial. This study compares two water engineering approaches to minimize the water footprint of a recirculating evaporative cooling tower (CT): (1) reusing cooling tower blowdown and (2) producing demineralized water to increase the cycles of concentration (CoC) of the CT. Our techno-economic analysis across various scenarios and CT settings reveals that reusing blowdown (option 1) is the most feasible approach for an industrial cooling system currently operating at CoCs of > 3, discharging blowdown with a conductivity of 2 mS/cm and a total organic carbon (TOC) concentration of approximately 20 mg/L. Compared to enhanced make up treatment, blowdown reuse allows higher water savings (13 %) and involves lower implementation and operation costs. Pilot scale trials validated the feasibility of both approaches. Blowdown and enhanced make up treatment included biologically activated carbon filtration, ultrafiltration and reverse osmosis, producing high-quality permeate, suitable for (re)use as CT make up or within other processes. The blowdown treatment reached a product quality of 80 µS/cm conductivity and 70 µg/L TOC, make up treatment 20 µS/cm in conductivity and 60 µg/L TOC, respectively. The study's findings underscore the viability of blowdown reuse as a cost-effective and efficient strategy to minimize the water footprint of cooling systems under increasing water scarcity conditions.


Assuntos
Purificação da Água , Purificação da Água/métodos , Abastecimento de Água , Água
3.
Front Microbiol ; 15: 1297721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544856

RESUMO

Background: Cooling towers are specialized heat exchanger devices in which air and water interact closely to cool the water's temperature. However, the cooling water contains organic nutrients that can cause microbial corrosion (MC) on the metal surfaces of the tower. This research explores the combined wastewater treatment approach using electrochemical-oxidation (EO), photo-oxidation (PO), and photoelectrochemical oxidation (PEO) to contain pollutants and prevent MC. Methods: The study employed electro-oxidation, a process involving direct current (DC) power supply, to degrade wastewater. MC studies were conducted using weight loss assessments, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Results: After wastewater is subjected to electro-oxidation for 4 h, a notable decrease in pollutants was observed, with degradation efficiencies of 71, 75, and 96%, respectively. In the wastewater treated by PEO, microbial growth is restricted as the chemical oxygen demand decreases. Discussion: A metagenomics study revealed that bacteria present in the cooling tower water consists of 12% of Nitrospira genus and 22% of Fusobacterium genus. Conclusively, PEO serves as an effective method for treating wastewater, inhibiting microbial growth, degrading pollutants, and protecting metal from biocorrosion.

4.
Int J Hyg Environ Health ; 248: 114117, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708652

RESUMO

BACKGROUND: Inhalation of Legionella-containing aerosols generated by cooling towers (CT) and evaporative condensers (EC) where water risk management is not performed correctly has been linked to a high percentage of community outbreaks of Legionnaires' disease (LD). Likewise, microbiological and physicochemical characteristics of the water in these facilities have been associated with this bacterium. The main aim of this study was to assess the risk of Legionella colonization in CT and EC based on the data for microbiological and physicochemical water quality provided by the Environmental Health Department and Laboratory of the City Council of L'Hospitalet de Llobregat (Barcelona, Spain). METHODS: Legionella was analysed in 789 samples collected from 127 CT and EC in 46 companies in Catalonia from 2002 to 2019. A two-step logistic regression analysis was carried out to assess the risk of colonization by Legionella in the studied facilities according to the microbiological (aerobic heterotrophic bacteria) and physicochemical (pH, alkalinity, hardness, turbidity, conductivity, total iron and Langelier Index) water parameters. The optimal cut-off points for the water parameters predictive of Legionella contamination were defined as the values on the receiver operating characteristic (ROC) curve where sensitivity and specificity were jointly maximized. RESULTS: Legionella was isolated in 8.49% of the 789 analysed samples, 22.39% of which were heavily contaminated (with counts higher than 1.0 × 104 CFU/l). L. pneumophila was isolated in 82.09% of the samples, with 41.82% belonging to serogroup 1. Logistic regression analysis revealed that aerobic heterotrophic bacteria concentrations ≥6.90 × 102 CFU/ml [Odds ratios (OR) (95% CI) = 3.56 (1.39-9.43), p = 0.01], a pH ≥ 8.70 [OR (95% CI) = 3.60 (1.34-10.09), p = 0.01], and water hardness ≥5.72 × 102 mg/l [OR (95% CI) = 6.30 (2.34-18.56), p < 0.001] were each independently associated with a higher risk of CT and EC colonization by Legionella. CONCLUSIONS: The present study shows the importance of risk assessment for improving the control measures aimed at preventing or reducing Legionella populations in CT and EC, thus minimizing potential dangers for public health.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Microbiologia da Água , Aerossóis e Gotículas Respiratórios , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia
5.
Environ Sci Pollut Res Int ; 30(44): 98895-98906, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36036347

RESUMO

This work presents a novel triple-renewable energy system (TRES) that is based on integrating the photovoltaic panels (PVPs), conventional solar chimney (CSC), and cooling tower (CT) in one structure. The ultimate objective of the proposed TRES system is to produce electrical power (Pelc), desalinated water (Dw), and if required cooling utilities. The components of the system include a chimney tower, collector, base, PVPs, water pool, bi-directional turbine, and water sprinklers. The TRES system can be operated as CSC during the daytime and CT at night providing 24-h operation. The PVPs were integrated within the structure to increase the Pelc production and enhance the process performance by heating the air inside the system. The TRES structure increased the efficiency to 0.860% in comparison with the CSC (0.313%). The annual Pelc production from the TRES system was found to be 792 MWh compared with only 380 MWh generated by the CSC achieving 2.1 folds overall improvement. The CSC-PV and CT contributed to 47% (494 MWh) and 24% (253 MWh) of the Pelc production, respectively. The annual Dw production was found to be 1.2-fold higher (163,142 tons) higher than the CSC (139,443 tons). The newly developed TRES system offers a great potential to produce Pelc and Dw and save fossil fuel consumption while reducing the emissions of greenhouse gasses (GHGs) to the atmosphere.


Assuntos
Energia Solar , Água , Energia Renovável , Luz Solar , Combustíveis Fósseis , Eletricidade
6.
Can Commun Dis Rep ; 49(9): 380-386, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38463904

RESUMO

Background: Thirty-five laboratory-confirmed legionellosis cases were reported to the Simcoe Muskoka District Health Unit (Ontario, Canada) between September 27, 2022, and October 15, 2022, resulting in one death and 29 hospitalizations. This article describes the Legionella outbreak and highlights activities for managing the outbreak, including various environmental and infrastructural controls associated with the public health response and some of the unique challenges and potential solutions to mitigate future outbreaks. Methods: All cases of legionellosis were reported to and investigated by the local provincial health unit. Within a 6 km radius around the community, 27 cooling towers (CTs) were identified as potential sources of Legionella. Environmental samples were collected from 19 CTs and a long-term care home. Outcome: Of the 35 cases, 29 (83%) were hospitalized (including three long-term care residents) with two requiring intubation/ventilation. Of the five sputa (clinical isolates) collected from confirmed cases, four tested positive for Legionella pneumophila (one was positive for L. pneumophila serogroup 1-with the same sequence type as one of the CT isolates). Education and recommendations were provided by the local provincial health unit to operators to improve CT operation. Conclusion: Detection and management of community legionellosis outbreaks associated with CTs involve resources and time to properly identify and control risks. Measures for community risk mitigation included coordinating with provincial and community partners, developing methods to rapidly identify CTs as a likely source of infection and applying operational/maintenance/testing standards for CTs to control bacterial growth and minimize the dispersion of contaminated aerosols.

7.
Emerg Infect Dis ; 28(11): 2357-2360, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36286248

RESUMO

In August 2021, a legionellosis outbreak involving 7 persons occurred within a 500-meter radius in the Montérégie region of Québec, Canada. Near real-time modeling of wind direction along with epidemiologic and environmental investigations identified the possible source. Modeling wind direction could help identify likely Legionella pneumophila sources during legionellosis outbreaks.


Assuntos
Legionella pneumophila , Legionelose , Doença dos Legionários , Humanos , Quebeque/epidemiologia , Legionelose/epidemiologia , Legionella pneumophila/genética , Surtos de Doenças , Canadá , Microbiologia da Água , Doença dos Legionários/epidemiologia
8.
Appl Environ Microbiol ; 88(3): e0192121, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818106

RESUMO

Legionella pneumophila widely exists in natural and artificial water environments, which enables it to infect people. L. pneumophila infection causes Legionnaires' disease (LD), which is a significant but relatively uncommon respiratory infection. Approximately 90% of LD is caused by L. pneumophila serogroup 1 (Lp1). Meteorological conditions may affect the infectivity and virulence of Lp1, but the exact relationship between them is still unclear. In this study, we evaluated the virulence of Lp1 by screening of total 156 Lp1 strains isolated from cooling tower water in different regions of China by detecting their abilities to activate NF-κB signaling pathway in vitro. In addition, we screened the distribution of some selected virulence genes in these strains. The virulence, virulence gene distribution, and the meteorological factors were analyzed. We found that both the virulence and the distribution of virulence genes had a certain regional and meteorological correlation. Although the loss of several virulence genes showed significant effects on the virulence of Lp1 strains, the distribution of virulence genes had very limited effects on the virulence of Lp1. IMPORTANCE LD is likely to be underrecognized in many countries. Due to the widespread existence of L. pneumophila in natural and artificial water environments and to the lack of cross-protection against different strains, L. pneumophila is a potentially serious threat to human health. Therefore, effective monitoring of the virulence of L. pneumophila in the water environment is very important to prevent and control the prevalence of LD. Understanding the virulence of L. pneumophila can not only help us to predict the risk of possible outbreaks in advance but can also enable more targeted clinical treatment. This study highlights the importance of understanding the epidemiology and ecology of L. pneumophila isolated from public facilities in terms of public health and biology. Due to the potential for water sources to harbor and disseminate L. pneumophila and to the fact that geographical conditions influence the virulence of L. pneumophila, timely and accurate L. pneumophila virulence surveillance is urgently needed.


Assuntos
Legionella pneumophila , Doença dos Legionários , China/epidemiologia , Surtos de Doenças , Ecologia , Humanos , Doença dos Legionários/epidemiologia , Microbiologia da Água
9.
Environ Sci Pollut Res Int ; 28(46): 65945-65951, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34327641

RESUMO

Regular monitoring and measurement of Legionella in tower water and preventive measures against contamination are particularly important in hospitals. This study aimed at risk assessment and disease burden because of legionella presence in cooling towers of Iran's central hospitals. Then its correlation with temperature, pH, turbidity, residual chlorine, and EC was investigated by the Pearson test. The health risk and burden of diseases caused by Legionella exposure were determined using QMRA and DALY models. Statistical analysis and modeling were performed in MATLAB2018. Of the total samples, 30-43% was infected with Legionella. The mean concentrations in hospital A and B were 5-102.5 ± 10 and 5-89.7 ± 0.7 CFU/L, respectively. Among environmental factors, turbidity and pH were the most effective factors in increasing and decreasing Legionella concentration, respectively. According to the QMRA model, the risks of Legionella infections and annual mortality in both hospitals were 0.2-0.3, 0-0.19, 2-2.9 × 10-5, and 0-0.7 × 10-5, respectively, which was higher than the acceptable risk range for Legionella (10-4-10-7). However, the trend of its change was negatively correlated with time (RB = - 0.77). According to the results, the concentration of Legionella and the exposure risk in both hospitals were higher than the permissible range, which is necessary to decrease to 0.1 current concentrations.


Assuntos
Legionella pneumophila , Legionella , Efeitos Psicossociais da Doença , Hospitais , Irã (Geográfico) , Medição de Risco , Microbiologia da Água
10.
Microorganisms ; 9(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072656

RESUMO

Temperature change over the length of heat exchangers might be an important factor affecting biofouling. This research aimed at assessing the impact of temperature on biofilm accumulation and composition with respect to bacterial community and extracellular polymeric substances. Two identical laboratory-scale plate heat exchanger modules were developed and tested. Tap water supplemented with nutrients was fed to the two modules to enhance biofilm formation. One "reference" module was kept at 20.0 ± 1.4 °C and one "heated" module was operated with a counter-flow hot water stream resulting in a bulk water gradient from 20 to 27 °C. Biofilms were grown during 40 days, sampled, and characterized using 16S rRNA gene amplicon sequencing, EPS extraction, FTIR, protein and polysaccharide quantifications. The experiments were performed in consecutive triplicate. Monitoring of heat transfer resistance in the heated module displayed a replicable biofilm growth profile. The module was shown suitable to study the impact of temperature on biofouling formation. Biofilm analyses revealed: (i) comparable amounts of biofilms and EPS yield in the reference and heated modules, (ii) a significantly different protein to polysaccharide ratio in the EPS of the reference (5.4 ± 1.0%) and heated modules (7.8 ± 2.1%), caused by a relatively lower extracellular sugar production at elevated temperatures, and (iii) a strong shift in bacterial community composition with increasing temperature. The outcomes of the study, therefore, suggest that heat induces a change in biofilm bacterial community members and EPS composition, which should be taken into consideration when investigating heat exchanger biofouling and cleaning strategies. Research potential and optimization of the heat exchanger modules are discussed.

11.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33674435

RESUMO

In large-building water systems, Legionella pneumophila is exposed to common environmental stressors such as copper. The aim of this study was to evaluate the susceptibility to copper of L. pneumophila isolates recovered from various sites: two clinical and seven environmental isolates from hot water system biofilm and water and from cooling tower water. After a 1-week acclimation in simulated drinking water, strains were exposed to various copper concentrations (0.8 to 5 mg/liter) for over 672 h. Complete loss of culturability was observed for three isolates following copper exposure to 5 mg/liter for 672 h. Two sequence type 1427 (ST1427)-like isolates were highly sensitive to copper, while the other two, isolated from biofilm samples, maintained higher culturability. The expression of the copper resistance gene copA evaluated by reverse transcription-quantitative PCR (RT-qPCR) was significantly higher for the biofilm isolates. All four ST1427-like isolates were recovered from the same water system during an outbreak. Whole-genome sequencing results confirmed that the four isolates are very close phylogenetically, differing by only 29 single nucleotide polymorphisms, suggesting in situ adaptation to microenvironmental conditions, possibly due to epigenetic regulation. These results indicate that the immediate environment within a building water distribution system influences the tolerance of L. pneumophila to copper. Increased contact of L. pneumophila biofilm strains with copper piping or copper alloys in the heat exchanger might lead to local adaptation. The phenotypic differences observed between water and biofilm isolates from the hot water system of a health care facility warrants further investigation to assess the relevance of evaluating disinfection performances based on water sampling alone.IMPORTANCELegionella pneumophila is a pathogen indigenous to natural and large building water systems in the bulk and the biofilm phases. The immediate environment within a system can impact the tolerance of L. pneumophila to environmental stressors, including copper. In health care facilities, copper levels in water can vary, depending on water quality, plumbing materials, and age. This study evaluated the impact of the isolation site (water versus biofilm, hot water system versus cooling tower) within building water systems. Closely related strains isolated from a health care facility hot water system exhibited variable tolerance to copper stress, shown by differential expression of copA, with biofilm isolates displaying highest expression and tolerance. Relying on the detection of L. pneumophila in water samples following exposure to environmental stressors such as copper may underestimate the prevalence of L. pneumophila, leading to inappropriate risk management strategies and increasing the risk of exposure for vulnerable patients.


Assuntos
Cobre/toxicidade , Água Potável/microbiologia , Hospitais , Legionella pneumophila , Abastecimento de Água , Adaptação Fisiológica , Biofilmes/efeitos dos fármacos , Tolerância a Medicamentos/genética , Genoma Bacteriano , Legionella pneumophila/efeitos dos fármacos , Legionella pneumophila/genética , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/fisiologia , Filogenia
12.
J Environ Manage ; 286: 112190, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636623

RESUMO

As an abundant and fast-growing biomass, bamboo can be used as construction materials owing to its desirable physical and mechanical properties, environmentally friendly features, and alternative to replace toxic and hazardous wastes in industrial processing. In this study, grid material made from bamboo (termed 'bamboo grid') was developed and compared to commercially used polyvinyl chloride (PVC) as packing material in cooling towers; PVC packing has drawbacks such as fouling, deposit buildup, low durability, and is harmful to environments. The cooling capacity, energy efficiency and environmental impact of bamboo grid packing were evaluated via life cycle assessment (LCA), particularly the cumulative energy demand (CED) and the Building for Environmental and Economic Sustainability (BEES). Although the thermal performance of the PVC packing was found higher than that of the bamboo grid packing, the bamboo grid packing showed improved resistance characteristic, recording a total saving of 529.2 tons of standard coal during a six-month field test in a real thermal power generation plant. LCA results revealed that the utilization of bamboo-grid packing to replace PVC packing in cooling towers reduced total CED from 3420 MJ to 561 MJ per functional unit, achieving 6 times reduction. A desirable reduction ranging from 1.5 to 10.5 times was also recorded for the BEES indices. This LCA comparison analysis confirmed the improvement of energy efficiency and reduction of environmental impact by using the bamboo grid to replace PVC as packing material in cooling towers. The major environmental impact (BEES) indices (e.g., the total Global warming potential, Acidification, Eutrophication and Smog) were reduced by 1.5-10.5 times via the use of bamboo grid. The results demonstrate that bamboo grid packing is a good alternative to replace existing grid packing materials such as concrete and PVC that are harmful to human health and environments.


Assuntos
Conservação de Recursos Energéticos , Cloreto de Polivinila , Carvão Mineral , Meio Ambiente , Centrais Elétricas
13.
Arch Microbiol ; 203(4): 1411-1425, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33388788

RESUMO

Biofilm is a microbial population which live in a self-produced extracellular polymeric matrix by attaching to surfaces. Biofilms consist of different different types of organisms such as bacteria, fungi, protozoa, etc. Many biofilms that develop in nature consist of more than one type of organism. Biofilms protect bacteria from adverse conditions such as temperature fluctuation and disinfectants. The aim of this study was to determine the effective elimination strategies for combating biofilm and planktonic bacteria in cooling tower model system using different decontamination / disinfection techniques. In this study, 14 week-old biofilms were treated with temperatures of 4 °C, 65 °C; pH of 3, 11; 2 and 10 mg/l chlorine, 2 and 10 mg/l monochloramine; hypotonic salt (0.01% NaCl) and hypertonic salt (3% NaCl) solution. For enumeration, number of aerobic heterotrophic bacteria was determined by conventional culture method, number of live bacteria was determined by LIVE/DEAD viability kit, CTC-DAPI and Alamar blue staining methods. Temperature of 65 °C, pH of 3, 10 mg/l monochloramine and hypertonic salt solution were the most effective parameters for decontamination of biofilm and planktonic bacteria. Biofilm bacteria in the circulating water system were significantly more resistant than planktonic bacteria against stress factors. When the numbers of epifluorescence microscopy and conventional culture technique were compared, significantly higher number of live bacteria were detected using epifluorescence microscopy. Bacteria enter the viable but non-culturable phase by loosing their culturability under stress conditions. For this reason, the conventional culture method should be supported by different techniques to get more realistic numbers.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Estresse Fisiológico , Microbiologia da Água , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Desinfecção/métodos , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Microscopia de Fluorescência , Modelos Biológicos , Temperatura
14.
Front Microbiol ; 11: 543589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362725

RESUMO

At the U.S. Department of Energy's Savannah River Site (SRS) in Aiken, SC, cooling tower water is routinely monitored for Legionella pneumophila concentrations using a direct fluorescent antibody (DFA) technique. Historically, 25-30 operating SRS cooling towers have varying concentrations of Legionella in all seasons of the year, with patterns that are unpredictable. Legionellosis, or Legionnaires' disease (LD), is a pneumonia caused by Legionella bacteria that thrive both in man-made water distribution systems and natural surface waters including lakes, streams, and wet soil. Legionnaires' disease is typically contracted by inhaling L. pneumophila, most often in aerosolized mists that contain the bacteria. At the SRS, L. pneumophila is typically found in cooling towers ranging from non-detectable up to 108 cells/L in cooling tower water systems. Extreme weather conditions contributed to elevations in L. pneumophila to 107-108 cells/L in SRS cooling tower water systems in July-August 2017. L. pneumophila concentrations in Cooling Tower 785-A/2A located in SRS A-Area, stayed in the 108 cells/L range despite biocide addition. During this time, other SRS cooling towers did not demonstrate this L. pneumophila increase. No significant difference was observed in the mean L. pneumophila mean concentrations for the towers (p < 0.05). There was a significant variance observed in the 285-2A/A Tower L. pneumophila results (p < 0.05). Looking to see if we could find "effects" led to model development by analyzing 13 months of water chemistry and microbial data for the main factors influencing the L. pneumophila concentrations in five cooling towers for this year. It indicated chlorine and dissolved oxygen had a significant impact (p < 0.0002) on cooling tower 785A/2A. Thus, while the variation in the log count data for the A-area tower is statistically greater than that of the other four towers, the average of the log count data for the A-Area tower was in line with that of the other towers. It was also observed that the location of 785A/2A and basin resulted in more debris entering the system during storm events. Our results suggest that future analyses should evaluate the impact of environmental conditions and cooling tower design on L. pneumophila water concentrations and human health.

15.
Sensors (Basel) ; 20(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182471

RESUMO

Evaporative cooling towers to dissipate excess process heat are essential installations in a variety of industries. The constantly moist environment enables substantial microbial growth, causing both operative challenges (e.g., biocorrosion) as well as health risks due to the potential aerosolization of pathogens. Currently, bacterial levels are monitored using rather slow and infrequent sampling and cultivation approaches. In this study, we describe the use of metabolic activity, namely oxygen respiration, as an alternative measure of bacterial load within cooling tower waters. This method is based on optical oxygen sensors that enable an accurate measurement of oxygen consumption within a closed volume. We show that oxygen consumption correlates with currently used cultivation-based methods (R2 = 0.9648). The limit of detection (LOD) for respiration-based bacterial quantification was found to be equal to 1.16 × 104 colony forming units (CFU)/mL. Contrary to the cultivation method, this approach enables faster assessment of the bacterial load with a measurement time of just 30 min compared to 48 h needed for cultivation-based measurements. Furthermore, this approach has the potential to be integrated and automated. Therefore, this method could contribute to more robust and reliable monitoring of bacterial contamination within cooling towers and subsequently increase operational stability and reduce health risks.


Assuntos
Bactérias/metabolismo , Carga Bacteriana , Oxigênio/análise , Microbiologia da Água , Indústrias
16.
Heliyon ; 6(2): e03249, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32072036

RESUMO

Cooling towers or recoolers are one of the major consumers of electricity in a HVAC plant. The implementation and analysis of advanced control methods in a practical application and its comparison with conventional controllers is necessary to establish a framework for their feasibility especially in the field of decentralised energy systems. A standard industrial controller, a PID and a model based controller were developed and tested in an experimental set-up using market-ready components. The characteristics of these controllers such as settling time, control difference, and frequency of control actions are compared based on the monitoring data. Modern controllers demonstrated clear advantages in terms of energy savings and higher accuracy and a model based controller was easier to set-up than a PID.

17.
J Appl Microbiol ; 128(6): 1843-1850, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31965680

RESUMO

AIMS: The purpose of this study was to evaluate the ISO 16266 membrane filtration culture-based method for the detection of Pseudomonas aeruginosa from cooling tower and related water samples and to compare the performance of the Pseudalert MPN method (Pseudalert™/Quanti-Tray® ) for the enumeration of P. aeruginosa with the ISO method. METHODS AND RESULTS: Samples were analysed by both methods and the generated data were analysed according to ISO 17994 and showed that Pseudalert resulted in significantly higher counts and a better recovery of P. aeruginosa than the ISO method for 10 and 100 ml sample volumes. CONCLUSIONS: Pseudalert represents a significant improvement in the enumeration of P. aeruginosa from cooling tower water and related samples. The advantages of Pseudalert became apparent in a better performance, a more than 10-fold higher upper quantification limit when using Quanti-Tray/2000 and a shorter incubation time with no requirement for further confirmation, resulting in a faster reporting of results. SIGNIFICANCE AND IMPACT OF THE STUDY: The (Pseudalert/Quanti-Tray) MPN method offers a more efficient and sensitive test for enumerating P. aeruginosa from cooling tower waters, thus significantly improving management of occupational safety during cleaning and maintenance activities of cooling towers.


Assuntos
Técnicas Bacteriológicas/métodos , Pseudomonas aeruginosa/isolamento & purificação , Microbiologia da Água , Contagem de Colônia Microbiana , Limite de Detecção , Fatores de Tempo
18.
Water Res ; 172: 115505, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986397

RESUMO

Understanding the bacterial dynamics in cooling towers is imperative for the assessment of disinfection efficiency and management of microbial risks linked to aerosol formation. The objective of this study was to evaluate the impact of feed water on the cooling water bacterial microbiome and investigate the survival ability of its members when exposed to continuous chlorine disinfection. Water from an industrial cooling water system (2600 m3/h) was collected over a 5-month period at 3 locations along the feed water line and 3 locations in the cooling tower. ATP measurements suggested that the average ATP-per-cell in the cooling tower evolved independently from the average ATP-per-cell in the feed water. Flow cytometry and 16S rRNA gene amplicon sequencing were then combined to quantify the bacterial dynamics in the whole system. A mass balance based equation was established to determine net growth and net decay of the cooling tower bacterial communities in order to evaluate the impact of continuous chlorination (0.35-0.41 mg Cl2/L residual chlorine). The results indicated that cooling tower main community members were determined by the input feed water microbiome and the bacterial community structure was further shaped by varying decay rates of the microorganisms. Notably, the order Obscuribacterales showed to be growing in the cooling tower in the presence of residual chlorine up to 0.4 mg Cl2/L, with a recurrent net growth of 260 ± 95%, taking into account the impact of the concentration factor. This conclusion was only possible thanks to the systematic analysis described in this paper and generates discussion about the resistance of Obscuribacterales to residual chlorine. The described mass balance approach provides a high level of understanding on bacterial dynamics and should be considered for future characterization studies of cooling towers in which accurate investigation of microbiome changes is essential.


Assuntos
Desinfecção , Água , Bactérias , Cloro , RNA Ribossômico 16S , Microbiologia da Água
19.
J Hazard Mater ; 386: 121661, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740302

RESUMO

The desalination and reuse of discharged cooling tower water (CTW) as feed water for the cooling tower could lower the industrial fresh water withdrawal. A potential pre-treatment method before CTW desalination is the use of constructed wetlands (CWs). Biodegradation is an important removal mechanism in CWs. In the present study, the impact of the biocides 2,2-dibromo-2-cyanoacetamide (DBNPA) and glutaraldehyde on the biodegradation process by CW microorganisms was quantified in batch experiments in which benzoic acid was incubated with realistic CTW biocide concentrations. DBNPA had a stronger negative impact on the biodegradation than glutaraldehyde. The combination of DBNPA and glutaraldehyde had a lower impact on the biodegradation than DBNPA alone. UHPLC-qTOF-MS/MS non-target screening combined with data-analysis script 'patRoon' revealed two mechanisms behind this low impact. Firstly, the presence of glutaraldehyde resulted in increased DBNPA transformation to the less toxic transformation product 2-bromo-2-cyanoacetamide (MBNPA) and newly discovered 2,2-dibromopropanediamide. Secondly, the interaction between glutaraldehyde and DBNPA resulted in the formation of new products that were less toxic than DBNPA. The environmental fate and toxicity of these products are still unknown. Nevertheless, their formation can have important implications for the simultaneous use of the biocides DBNPA and glutaraldehyde for a wide array of applications.


Assuntos
Ácido Benzoico/metabolismo , Glutaral/farmacologia , Nitrilas/farmacologia , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Áreas Alagadas
20.
Sci Total Environ ; 696: 133939, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445235

RESUMO

The mixing and merging of buoyant plumes originating from multiple small cooling towers into the atmosphere is numerically investigated. The effects of different arrangements of cooling towers as well as outlet geometries on the mixing of the plumes are examined. The side by side and tandem arrangements of two sources and also two types of multi-flue cooling towers are considered. The various ways by which the counter rotating vortex pair, as the dominant mechanism, affect the flow pattern in each aforementioned configuration are investigated. For tandem arrangement, far from sources, the outlet flow of the downstream cooling tower surrounds the plumes originating from the upstream cooling tower and in the region near the cooling towers, the pollutants are mostly originated from the upstream cooling tower. Maximum pollutant concentrations at distances 10 and 40 times the diameter downstream of the leading cooling tower increase by 67% and 29% with respect to those of a single cooling tower, respectively. For the side by side arrangement, the counter rotating vortices are stretched due to the large low pressure area created downstream of the cooling towers. Mixing of the plumes with the surrounding air is reduced as a result of contraction of vortices. Maximum contaminant concentrations at distances 10 and 40 times the diameter downstream of the cooling towers increase by 29% and 41% with respect to those of a single tower, respectively. Finally, the differences between flow fields formed around diamond and square configurations of multi-flue cooling towers are extensively discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA