Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.190
Filtrar
1.
Rep Biochem Mol Biol ; 12(4): 664-673, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39086581

RESUMO

Background: Pro-inflammatory cytokines play critical roles in cancer pathobiology and have been considered potential targets for cancer management and therapy. Understanding the impact of cancer therapeutics such as 5-fluorouracil (5-FU) on their expression might shed light on development of novel combinational therapies. This study aimed to encapsulate 5-FU into PLGA and evaluate their effects on the expression of pro-inflammatory genes IL-9, IL-17-A, IL-23, and IFN-y; in the HT-29 cells. Methods: PLGA-5-FU NPs were constructed and characterized by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The cytotoxicity was evaluated by MTT test and, the IC50 was identified. HT-29 cells were treated with different concentrations of the PLGA-5-FU NPs for 48 hours and, gene expression levels were analyzed by qRT-PCR. Results: DLS and AFM analysis revealed that the prepared PLGA-5-FU NPs were negatively charged spherical-shaped particles with a mean size of 215.9 ± 43.3 nm. PLGA-5-FU NPs impacted the viability of HT-29 cells in a dose- and time-dependent manner. The qRT-PCR results revealed a dose-dependent decrease in the expression of IL-9, IL-17A, IL-23 and IFN-y; genes, and their expressions were significantly different in both 10 and 20 µg/mL treated groups compared to the control. However, although the treatment of HT-29 cells with 20 µg/mL free 5-FU resulted in decreased expression of the studied genes, the differences were not statistically significant compared to the control group. Conclusion: PLGA-5-FU NPs significantly suppressed expression of the IL-9, IL-17A, IL-23 and IFN-y; genes, and the encapsulation of 5-FU into PLGA improved considerably impact of the 5-FU on the HT-29 cells.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39087693

RESUMO

Aberrant metabolism of purines and pyrimidines led to development of drugs for treatment of various diseases, such as inflammatory, neurological, cardiovascular, viral infections and cancer. Purine and Pyrimidine Symposia are characterized by close interactions, leading to extensive cross-fertilization on methodology and translating not only from bench-to-bedside, but also between various disciplines such as medicinal chemistry, pharmacology, oncology, virology, rheumatology, biochemistry, pediatrics, cardiology, surgery and immunology. This background was fundamental in our studies on how to optimize application of existing drugs (5-fluorouracil [5FU], thiopurines, antifolates such as methotrexate) but also to support development of novel drugs such as gemcitabine, novel antifolates, S-1, TAS-102 and fluorocyclopentenylcytosine. Knowledge of their metabolism helped to design rational combinations such as of gemcitabine with cisplatin, one of the most widely used drug combinations for various cancers. The combination of 5FU with uridine, led to the development of triacetyluridine registered for emergency treatment of patients with lethal 5FU toxicity. Mechanisms of action were studied by careful analysis of their metabolism, using classical enzyme assays with radioactive precursors and HPLC analysis. Drug metabolism moved from manually operated HPLC systems with UV-detection for peak identification and paper rolls for quantification, to computer-operated HPLC with automatic multi-wavelength and fluorometric peak detection and more recently to ultrasensitive, highly specific mass-spectrometry-based systems. Some aspects, however, never changed; careful analysis of the results and being prepared for the unexpected. The latter actually led to the most interesting results. Investigation of (nucleoside/nucleotide) metabolism remains an exciting field of research.

3.
Heliyon ; 10(13): e34005, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091933

RESUMO

Studies have indicated cancer-associated fibroblasts (CAFs) could have a significant impact in gastric cancer (GC) progression and chemotherapy resistance. However, the gene related to cancer fibroblasts that can be used as biomarkers to judge the occurrence of gastric cancer has not been fully explored. Based on two Gene Expression Omnibus (GEO) datasets, we focus on differentially expressed genes which may act as CAFs markers related to GC. Through COX regression, LASSO regression and Kaplan-Meier survival analysis, we discovered three upregulated genes (GLT8D2, GNAS and EDA) associated with poor GC patients' survival. By single-cell analysis and nomogram, we found that EDA may affect fibroblast production and disease prognosis in GC patients. EDA expression showed a positive correlation with 5-Fluorouracil IC50 values. Immunohistochemistry (IHC) and real time PCR indicated elevated EDA levels in GC tissues and cells. Enrichment analysis revealed that EDA was closely linked to immune system regulation. IHC and single-cell analysis indicated that EDA gene was associated with cancer fibroblasts marker FGF12 and influence cell interferon-gamma response, which may play a role in regulating immune-related characteristics. In summary, we concluded that EDA may be used as a new therapeutic CAFs marker for GC.

4.
Am J Cancer Res ; 14(7): 3523-3532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113858

RESUMO

Various first-line gemcitabine-based or fluorouracil-based combination regimens were approved in patients with advanced pancreatic cancer. Recent randomized clinical trials (RCTs) have investigated chemotherapy backbones in combination with novel investigational drugs, including chemotherapy agents or targeted drugs. However, the comparative efficacy of these different combination therapies remains limited. This systematic review and network meta-analysis aimed to assess the efficacy of first-line combination therapies for advanced pancreatic cancer. The study included 46 RCTs with 10,499 patients and 47 distinct regimens, using data sources from MEDLINE, EMBASE, Cochrane Clinical Trials, and ClinicalTrials.gov from January 1, 2010 to April 23, 2024. The primary outcomes were overall survival (OS) and progression-free survival (PFS), while secondary outcomes included overall response rate (ORR) and disease control rate (DCR). The analysis revealed that gemcitabine+nab-paclitaxel (GA), GA with platinum and fluorouracil (GA+Plat+FU), gemcitabine with fluorouracil (G+FU), G+Plt+FU, and FOLFIRINOX were associated with superior OS and PFS compared to gemcitabine monotherapy. Triplet or quadruplet polychemotherapy combinations, such as GA+Plat+FU, G+Plt+FU, and FOLFIRINOX, demonstrated better OS benefit with hazard ratios of 0.42 (95% CI, 0.26-0.68), 0.41 (95% CI, 0.24-0.71), and 0.58 (95% CI, 0.48-0.71), respectively, compared to doublet regimens like GA and G+FU, which had hazard ratios of 0.70 (95% CI, 0.59-0.82) and 0.82 (95% CI, 0.72-0.95), respectively. Notably, no targeted drugs, monoclonal antibodies, or other medications showed improved survival when added to chemotherapy backbones. These findings support the use of gemcitabine-based or fluorouracil-based triplet or quadruplet regimens for better survival outcomes in patients with advanced pancreatic cancer. Further research is warranted to explore the potential benefits of adding chemotherapy agents, such as fluorouracil, to the GA doublet regimen.

5.
Heliyon ; 10(14): e34528, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114045

RESUMO

Background: 5-Fluorouracil (5-Fu), a prominent chemotherapeutic agent for colorectal cancer (CRC) treatment, is often associated with gastrointestinal toxicities, particularly diarrhea. Our previous study demonstrated that berberine (BBR) ameliorates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota in rats. Nevertheless, the precise molecular mechanism underlying BBR's protective effect on intestinal mucosa remains elusive, and its impact on the anti-tumor efficacy of 5-Fu warrants further investigation. Methods: The effect of BBR on 5-Fu-induced intestinal mucosal injury was investigated using a tumor-bearing murine model, employing H&E staining, 16 S rDNA sequencing, transcriptome sequencing, Western blot analysis, cell experiments and constructing a pseudo-germ-free tumor xenograft model. Result: Our findings demonstrate that BBR alleviates intestinal mucosal damage, reduces the levels of inflammatory factors (IL-6, TNF-α, and IL-1ß), and inhibits epithelial cell apoptosis in 5-Fu-treated mice without compromising 5-Fu's anti-tumor efficacy. Moreover, 16 S rDNA sequencing indicated that BBR significantly increases the abundance of Akkermansia and decreases the abundance of pathogenic bacteria Escherichia/Shigella at the genus level. Mechanistically, transcriptome sequencing and Western blot analysis confirmed that BBR upregulates PI3K/AKT/mTOR expression in the intestinal mucosa. However, this effect was not observed in tumor tissues. Notably, BBR did not demonstrate a direct protective effect on 5-Fu-treated CCD841 and SW480 cells. Additionally, BBR had no effect on the PI3K/AKT/mTOR pathway in the intestinal tissue of the 5-Fu-treated mouse model with a depleted gut microbiota. Conclusion: This study indicates that BBR alleviates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota and regulating the PI3K/AKT/mTOR signaling pathway without compromising the anti-tumor efficacy of 5-Fu.

6.
BMC Cancer ; 24(1): 983, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118083

RESUMO

PURPOSE: Colorectal cancer (CRC) is one of the top five cancer-related causes of mortality globally. Acquired resistance has hindered the effectiveness of 5-fluorouracil (5-FU), the main chemotherapeutic drug used to treat CRC. Sphingosine kinase 2 (SphK2) may be a cancer treatment target and involved in 5-FU resistance. METHODS: Cell growth was examined using MTT and clone formation assays for SphK2 expression. To identify immune cells in mice, flow cytometry was performed. West blotting demonstrated alterations in cell division and inflammation-related proteins. SphK2 levels and inflammation-related variables were studied using Elisa. RESULTS: Due to SphK2 overexpression, immunosuppression, and 5-FU resistance are caused by the development of myeloid-derived suppressor cells (MDSCs) subsequent to IL-6/STAT3 activation and alterations in the arginase (ARG-1) protein. After therapy, the combination of SphK2 inhibitors and 5-FU can effectively suppress MDSCs while increasing CD4+ and CD8+ T cell infiltration into the tumor microenvironment, lowering tumor burden, and exhibiting a therapeutic impact on CRC. CONCLUSIONS: Our findings suggest that 5-FU treatment combined with simultaneous Spkh2 inhibition by ABC294640 has anti-tumor synergistic effects by influencing multiple effects on tumor cells, T cells, and MDSCs, potentially improving the poor prognosis of colorectal cancer patients.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Células Supressoras Mieloides , Fosfotransferases (Aceptor do Grupo Álcool) , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Artigo em Inglês | MEDLINE | ID: mdl-39126575

RESUMO

5-Fluorouracil (5-FU) is commonly used as a chemotherapeutic drug for advanced HCC. However, the effectiveness of 5-FU is limited by the emergence of resistance and poor targeting efficiency. Combining 5-FU with natural compounds has shown promise in HCC treatment. In this study, we prepared carrier-free nanoparticles (GEN-Cu-GEN@FUA) containing 5-FU and genistein (GEN) in a synergistic ratio via a green synthesis procedure. The resulting GEN-Cu-GEN@FUA nanoparticles had a spherical or near spherical shape, a dynamic size of 129.3 ± 40.1 nm, and a high drug loading content of approximately 21.40% (5-FU) and 61.48% (GEN). These nanoparticles exhibited approximately 3.6-fold lower IC50 value than 5-FU alone in Bel-7402 cells and resulted in a 3.7-fold greater reduction in tumor weight compared to 5-FU alone in Bel-7402 tumor-bearing BALB/c mice. Importantly, the nanoparticles showed negligible systemic toxicity due to their synergistic effect on cancer cell dysfunction and significant amplification of intracellular glutathione consumption. Our findings suggest that the developed carrier-free nanomedicines offer a highly promising platform for the co-delivery of genistein (GEN) copper(II) complexes and 5-FU, with easy fabrication and great potential for clinical translation in HCC synergistic therapy.

8.
Cancer Cell Int ; 24(1): 288, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143546

RESUMO

BACKGROUND: Gastric cancer (GC) encompasses many different histological and molecular subtypes. It is a major driver of cancer mortality because of poor survival and limited treatment options. Personalised medicine in the form of patient-derived organoids (PDOs) represents a promising approach for improving therapeutic outcomes. The goal of this study was to overcome the limitations of current models by ameliorating organoid cultivation. METHODS: Organoids derived from cancer tissue were evaluated by haematoxylin and eosin staining, immunohistochemistry, mRNA, and whole-exome sequencing. Three representative chemotherapy drugs, 5-fluorouracil, docetaxel, and oxaliplatin, were compared for their efficacy against different subtypes of gastric organoids by ATP assay and apoptosis staining. In addition, drug sensitivity screening results from two publicly available databases, the Genomics of Drug Sensitivity in Cancer and Cancer Cell Line Encyclopaedia, were pooled and applied to organoid lines. Once key targeting genes were confirmed, chemotherapy was used in combination with poly (ADP ribose) polymerase (PARP)-targeted therapy. RESULTS: We successfully constructed GC PDOs surgically resected from GC patient tissue. PDOs closely reflected the histopathological and genomic features of the corresponding primary tumours. Whole-exosome sequencing and mRNA analysis revealed that changes to the original tumour genome were maintained during long-term culture. The drugs caused divergent responses in intestinal, poorly differentiated intestinal, and diffuse gastric cancer organoids, which were confirmed in organoid lines. Poorly differentiated intestinal GC patients benefited from a combination of 5-fluorouracil and veliparib. CONCLUSION: The present study demonstrates that combining chemotherapy with PARP targeting may improve the treatment of chemotherapy-resistant tumours.

9.
An. bras. dermatol ; 99(4): 527-534, Jul.-Aug. 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1563698

RESUMO

Abstract Background 5-Fluorouracil (5-FU) is a first-line drug to treat cutaneous field cancerization (CFC). There are few clinical trials with topical colchicine (COL). Objective To evaluate the effectiveness of 0.5% COL cream versus 5% 5-FU cream in the treatment of CFC. Method This was a randomized, open, self-controlled clinical trial. Forty-five patients (90 forearms), with three to ten actinic keratoses (AK) on each forearm, used 0.5% COL cream 2×/day for seven days on one forearm, and 5% 5-FU cream 2× /day, for 21 days, on the other forearm. The dosages were defined based on previous clinical trials for each drug. Adverse effects were evaluated after 14 days and outcomes after 90 days of inclusion. The primary outcome was complete AK clearance and the secondary outcomes were: partial clearance (≥50%), reduction in AK count, assessment of the Forearm Photoaging Scale (FPS), AK Severity Score (AKSS), and adverse effects. Results After 90 days, there was complete clearance of AK in 37% (95% CI 24%-49%) and partial clearance in 85% (95% CI 76%-93%) of the forearms treated with 5-FU,versus 17% (95% CI 7%-27%) and 78% (95% CI 66%-88%) for COL (p > 0.07). There was a percentage reduction of 75% in the AK count of the forearms treated with 5-FU (95% CI 66%-83%) and 64% in those treated with COL (95% CI 55%-72%). Regarding FPS and AKSS, there was improvement in both groups, with no difference regarding FPS (p = 0.654), and 5-FU superiority for AKSS (p = 0.012). Study limitations Single-center study. Conclusions 5-FU and COL are effective for treating CFC, with neither showing superiority regarding the reduction in AK counts.

10.
Clin Transl Radiat Oncol ; 47: 100804, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974185

RESUMO

Background: Radiotherapy combined with fluorouracil (5FU) and cisplatin for locally advanced esophageal cancer is associated with a 20-25% pathologic complete response (pCR) rate. Cetuximab increases the efficacy of radiotherapy in patients with head and neck carcinomas. The aim of this phase I/II trial was to determine the optimal doses and the pCR rate with chemoradiotherapy (C-RT) plus cetuximab. Methods: A 45-Gy radiotherapy regimen was delivered over 5 weeks. The phase I study determined the dose-limiting toxicity and the maximum tolerated dose of 5FU-cisplatin plus cetuximab. The phase II trial aimed to exhibit a pCR rate > 20 % (25 % expected), requiring 33 patients (6 from phase I part plus 27 in phase II part). pCR was defined as ypT0Nx. Results: The phase I study established the following recommended doses: weekly cetuximab (400 mg/m2 one week before, and 250 mg/m2 during radiotherapy); 5FU (500 mg/m2/day, d1-d4) plus cisplatin (40 mg/m2, d1) during week 1 and 5. In the phase II part, 32 patients received C-RT before surgery, 31 patients underwent surgery, and resection was achieved in 27 patients. A pCR was achieved in five patients (18.5 %) out of 27. After a median follow-up of 19 months, the median progression-free survival was 13.7 months, and the median overall survival was not reached. Conclusions: Adding cetuximab to preoperative C-RT was toxic and did not achieve a pCR > 20 % as required. The recommended doses, determined during the phase I part, could explain these disappointing results due to a reduction in chemotherapy dose-intensity. Trial registration: This trial was registered with EudraCT number 2006-004770-27.

11.
PeerJ ; 12: e17608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978756

RESUMO

According to our preliminary study, melatonin and its N-amide derivatives (N-(2-(1-4-bromobenzoyl-5-methoxy-1H-indol-3-yl)ethyl)acetamide (BBM) and 4-bromo-N-(2-(5-methoxy-1H-indol-3-yl)ethyl)benzamide (EBM)) inhibited the marker of acute inflammation in tests in vitro and in vivo. The anti-inflammatory agent is intended for the prevention and treatment of chemotherapy-induced toxicity. In this study aimed to evaluate the effect of melatonin and its derivatives on mechanisms related to chemotherapy-induced oral mucositis by in vitro ROS and 5-FU-induced human keratinocyte cells as well as in vivo oral mucositis model. In in vitro H2O2-induced HaCaT cells, BBM had the highest level of protection (34.57%) at a concentration 50 µM, followed by EBM (26.41%), and melatonin (7.9%). BBM also protected cells against 5-FU-induced to 37.69-27.25% at 12.5-100 µM while EBM was 36.93-29.33% and melatonin was 22.5-11.39%. In in vivo 5-FU-induced oral mucositis in mice, melatonin, BBM, and EBM gel formulations protected tissue damage from 5-FU similar to the standard compound, benzydamine. Moreover, the weight of mice and food consumption recovered more quickly in the BBM group. These findings suggested that it was possible to develop BBM and EBM as new therapeutic agents for the treatment of oral mucositis.


Assuntos
Melatonina , Estomatite , Melatonina/farmacologia , Melatonina/uso terapêutico , Estomatite/induzido quimicamente , Estomatite/tratamento farmacológico , Estomatite/prevenção & controle , Estomatite/patologia , Animais , Humanos , Camundongos , Queratinócitos/efeitos dos fármacos , Fluoruracila/efeitos adversos , Fluoruracila/toxicidade , Masculino , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia
12.
AAPS PharmSciTech ; 25(6): 162, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997615

RESUMO

In 1987, Won invented the solid-phase porous microsphere (MS), which stores bioactive compounds in many interconnected voids. Spherical particles (5-300 µm), MS, may form clusters of smaller spheres, resulting in many benefits. The current investigation focussed on gel-encased formulation, which can be suitable for dermal usage. First, quasi-emulsion (w/o/w) solvent evaporation was used to prepare 5-fluorouracil (5 FU) MS particles. The final product was characterized (SEM shows porous structure, FTIR and DSC showed drug compatibility with excipients, and gel formulation is shear-thinning) and further scaled up using the 8-fold method. Furthermore, CCD (Central Composite Design) was implemented to obtain the optimized results. After optimizing the conditions, including the polymer (600 mg, ethyl cellulose (EC), eudragit RS 100 (ERS)), stirring speed (1197 rpm), and surfactant concentration (2% w/v), we achieved the following results: optimal yield (63%), mean particle size (152 µm), drug entrapment efficiency (76%), and cumulative drug release (74.24% within 8 h). These findings are promising for industrial applications and align with the objectives outlined in UN Sustainable Development Goals 3, 9, and 17, as well as the goals of the G20 initiative.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Fluoruracila , Microesferas , Tamanho da Partícula , Fluoruracila/administração & dosagem , Fluoruracila/química , Sistemas de Liberação de Medicamentos/métodos , Porosidade , Emulsões/química , Celulose/química , Celulose/análogos & derivados , Química Farmacêutica/métodos , Polímeros/química , Excipientes/química , Solventes/química , Tensoativos/química , Resinas Acrílicas/química , Portadores de Fármacos/química , Géis/química
13.
Aesthetic Plast Surg ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992250

RESUMO

BACKGROUND: Addressing hypertrophic scars and keloids poses a significant challenge in the realm of preventive and curative medicine. Combination corticosteroid with 5-fluorouracil (5-FU) is presumed to enhance the treatment of hypertrophic scars and keloids, although supportive evidence is lacking. This study is aimed at comparing the efficacy and safety profile of a combined corticosteroid and 5-FU regimen in treating hypertrophic scars and keloids. METHODS: A comprehensive search was conducted for pertinent studies across various databases, including Web of Science, PubMed, Google Scholar, Cochrane Library, and Medline. The calculation of weighted mean difference (WMD), risk ratios (RR), odds ratios (OR), and 95% confidence intervals (CIs) was executed. Additionally, the Cochrane Collaboration's Risk of Bias Tool was utilized to evaluate potential bias risks. RESULTS: A total of 15 studies were involved. The effectiveness based on patient self-assessment and the effectiveness based on observer assessment were significantly higher in the corticosteroid+5-FU group compared to those treated with control. A meta-analysis of scar height showed that the corticosteroid+5-FU group performed better than the control group (WMD = -0.38, 95% CI -0.58 to -0.18). There was no significant difference between the corticosteroid+5-FU group and the control group in improving scar vascularity, pliability and pigmentation. The result revealed that the corticosteroid+5-FU group of patients had less adverse effect of hypopigmentation, skin atrophy and telangiectasia than the control group. CONCLUSION: The combined use of corticosteroids and 5-FU appears to be a more effective strategy for the treatment and prevention of hypertrophic scars and keloids, as evidenced by greater improvements in scar height and overall effectiveness, coupled with a reduced incidence of side effects. LEVEL OF EVIDENCE II: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

14.
Artigo em Alemão | MEDLINE | ID: mdl-38995371

RESUMO

Actinic keratosis (AK) is among the most common conditions in dermatology in an increasingly aging population. However, the presence of severe field cancerization with large treatment fields showing multiple lesions with distinct features often poses a therapeutic challenge. The most accurate possible characterization of the treatment field, risk assessment concerning the occurrence of cutaneous squamous cell carcinoma, and knowledge of the efficacy and local side effects of the available interventions are of paramount importance for effective management and preventive efforts. This article summarizes current developments in the diagnosis and treatment of AK and discusses their application in everyday clinical practice. In particular, the focus is on the increasing value of non-invasive diagnostic techniques like "line-field" confocal optical coherence tomography, and the recently approved topical agents tirbanibulin 1% ointment and 5­fluorouracil 4% cream, as well as current developments of photodynamic therapy and prevention.

15.
Reprod Toxicol ; 128: 108661, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986848

RESUMO

5-Fluorouracil (5-FU) is the third most used chemotherapeutic in the world with its anticancer effect resulting from its potential to block DNA replication. Like other cytotoxic agents, 5-FU has side effects on healthy tissues, and the reproductive system is among the tissues most affected by these undesirable effects. Gentisic acid (GEA) is a secondary metabolite that is abundant in fruits, vegetables and spices and has antioxidant activity. This study was conducted to investigate the toxicity of 5-FU in rat ovarian tissue and to determine the therapeutic activity of GEA on ovotoxicity caused by 5-FU. The results showed that 5-FU caused histopathological findings by suppressing Nrf2 pathway and accordingly increasing oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis. However, GEA treatments after 5-FU application ameliorated 5-FU-induced ovotoxicity dose-dependently through activation of Nrf2 pathway. All these findings provided strong evidence supporting the hypothesis that GEA treatment may have therapeutic effects against 5-FU-induced ovarian damage. However, the beneficial effect of GEA use in eliminating ovarian damage in women after 5-FU chemotherapy should continue to be investigated with more detailed molecular studies.

16.
Materials (Basel) ; 17(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38998269

RESUMO

In this study, a novel multifunctional biofilm was fabricated using a straightforward casting process. The biofilm comprised gelatin, chitosan, 5-fluorouracil (5-FU)-conjugated zinc oxide nanoparticles, and polyvinyl alcohol plasticized with glycerol. The 5-FU-conjugated nanoparticles were synthesized via a single-step co-precipitation process, offering a unique approach. Characterization confirmed successful drug conjugation, revealing bar-shaped nanoparticles with sizes ranging from 90 to 100 nm. Drug release kinetics followed the Korsmeyer-Peppas model, indicating controlled release behavior. Maximum swelling ratio studies of the gelatin-chitosan film showed pH-dependent characteristics, highlighting its versatility. Comprehensive analysis using SEM, FT-IR, Raman, and EDX spectra confirmed the presence of gelatin, chitosan, and 5-FU/ZnO nanoparticles within the biofilms. These biofilms exhibited non-cytotoxicity to human fibroblasts and significant anticancer activity against skin cancer cells, demonstrating their potential for biomedical applications. This versatility positions the 5-FU/ZnO-loaded sheets as promising candidates for localized topical patches in skin and oral cancer treatment, underscoring their practicality and adaptability for therapeutic applications.

17.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999024

RESUMO

The microbiome is capable of modulating the bioavailability of chemotherapy drugs, mainly due to metabolizing these agents. Multiple cytostatic bacterial metabolites were recently identified that have cytostatic effects on cancer cells. In this study, we addressed the question of whether a set of cytostatic bacterial metabolites (cadaverine, indolepropionic acid and indoxylsulfate) can interfere with the cytostatic effects of the chemotherapy agents used in the management of breast cancer (doxorubicin, gemcitabine, irinotecan, methotrexate, rucaparib, 5-fluorouracil and paclitaxel). The chemotherapy drugs were applied in a wide concentration range to which a bacterial metabolite was added in a concentration within its serum reference range, and the effects on cell proliferation were assessed. There was no interference between gemcitabine, irinotecan, methotrexate or rucaparib and the bacterial metabolites. Nevertheless, cadaverine and indolepropionic acid modulated the Hill coefficient of the inhibitory curve of doxorubicin and 5-fluorouracil. Changes to the Hill coefficient implicate alterations to the kinetics of the binding of the chemotherapy agents to their targets. These effects have an unpredictable significance from the clinical or pharmacological perspective. Importantly, indolepropionic acid decreased the IC50 value of paclitaxel, which is a potentially advantageous combination.


Assuntos
Neoplasias da Mama , Proliferação de Células , Citostáticos , Doxorrubicina , Fluoruracila , Paclitaxel , Paclitaxel/farmacologia , Fluoruracila/farmacologia , Doxorrubicina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Citostáticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Antineoplásicos/farmacologia , Indóis/farmacologia
18.
Carbohydr Res ; 543: 109206, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002209

RESUMO

The objective of this study is to develop a drug carrier to overcome the inherent drawbacks of 5-Fluorouracil (5-Fu), including low bioavailability, short half-life, and systemic toxicity. In the present work, mesoporous silica nanoparticles (MSNs) capped by chitosan (CS) to encapsulate 5-Fu (5-Fu MSNs/CS) were fabricated by the sol-gel process, ultrasonic impregnation, and emulsion cross-linking. The 5-Fu MSNs/CS microspheres exhibit pH-responsive drug release and remarkable drug encapsulation capacity, as well as perfect sphericity, high specific surface area (680.62 cm2/g), and uniform particle size (2.64 ± 0.05 µm). The drug-loading content and encapsulation efficiency are 14.12 ± 0.53 % and 82.21 ± 2.13 %, respectively. The cumulative release of 5-Fu from MSNs/CS microspheres is fast and sustained at pH 5.0 (89.56 ± 0.97 %) compared to that at pH 7.4 (57.88 ± 0.91 %) in 96 h, and it is Fickian diffusion controlled. In conclusion, the MSNs/CS microspheres prepared in this study could be potential carriers for 5-Fu delivery.

19.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000029

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in terms of diagnosis and treatment, with limited therapeutic options and a poor prognosis. This study explored the potential therapeutic role of NPS-1034, a kinase inhibitor targeting MET and AXL, in PDAC. The investigation included monotherapy with NPS-1034 and its combination with the commonly prescribed chemotherapy agents, fluorouracil and oxaliplatin. Our study revealed that NPS-1034 induces cell death and reduces the viability and clonogenicity of PDAC cells in a dose-dependent manner. Furthermore, NPS-1034 inhibits the migration of PDAC cells by suppressing MET/PI3K/AKT axis-induced epithelial-to-mesenchymal transition (EMT). The combination of NPS-1034 with fluorouracil or oxaliplatin demonstrated a synergistic effect, significantly reducing cell viability and inducing tumor cell apoptosis compared to monotherapies. Mechanistic insights provided by next-generation sequencing indicated that NPS-1034 modulates immune responses by inducing type I interferon and tumor necrosis factor production in PDAC cells. This suggests a broader role for NPS-1034 beyond MET and AXL inhibition, positioning it as a potential immunity modulator. Overall, these findings highlight the anticancer potential of NPS-1034 in PDAC treatment in vitro, both as a monotherapy and in combination with traditional chemotherapy, offering a promising avenue for further in vivo investigation before clinical exploration.


Assuntos
Apoptose , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Receptor Tirosina Quinase Axl , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Movimento Celular/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
20.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000577

RESUMO

Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares , Fluoruracila , Compostos Fitoquímicos , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Vesículas Extracelulares/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA