Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagn Microbiol Infect Dis ; 109(1): 116203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422664

RESUMO

Haemophilus influenzae is an important pathogen able to cause various forms of respiratory and invasive disease. To provide high sensitivity for detection, culture media must inhibit growth of residential flora from the respiratory tract. This study aimed to identify and compare the diagnostic and economic advantages of using bacitracin containing selective agar (SEL) or oleandomycin disk supplemented chocolate agar (CHOC). Growth and semi-quantitative abundance of H. influenzae and growth suppression of residential flora was prospectively assessed in a 28-week period. H. influenzae was identified in 164 (5 %) of all included samples: CHOC and SEL, CHOC only, and SEL only were positive in 95, 24, and 45 cases. Diagnostic superiority of SEL was primarily attributable to the results of throat swabs. However, on average, € 200 had to be spent for the detection of each additional isolate that was recovered only because of additional incubation on SEL.


Assuntos
Bacitracina , Chocolate , Humanos , Ágar , Bacitracina/farmacologia , Haemophilus influenzae , Oleandomicina , Meios de Cultura
2.
Biomolecules ; 10(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036250

RESUMO

The cytochrome P450 OleP catalyzes the epoxidation of aliphatic carbons on both the aglycone 8.8a-deoxyoleandolide (DEO) and the monoglycosylated L-olivosyl-8.8a-deoxyoleandolide (L-O-DEO) intermediates of oleandomycin biosynthesis. We investigated the substrate versatility of the enzyme. X-ray and equilibrium binding data show that the aglycone DEO loosely fits the OleP active site, triggering the closure that prepares it for catalysis only on a minor population of enzyme. The open-to-closed state transition allows solvent molecules to accumulate in a cavity that forms upon closure, mediating protein-substrate interactions. In silico docking of the monoglycosylated L-O-DEO in the closed OleP-DEO structure shows that the L-olivosyl moiety can be hosted in the same cavity, replacing solvent molecules and directly contacting structural elements involved in the transition. X-ray structures of aglycone-bound OleP in the presence of L-rhamnose confirm the cavity as a potential site for sugar binding. All considered, we propose L-O-DEO as the optimal substrate of OleP, the L-olivosyl moiety possibly representing the molecular wedge that triggers a more efficient structural response upon substrate binding, favoring and stabilizing the enzyme closure before catalysis. OleP substrate versatility is supported by structural solvent molecules that compensate for the absence of a glycosyl unit when the aglycone is bound.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Lactonas/química , Catálise , Cristalografia por Raios X , Domínios Proteicos , Ramnose/química , Relação Estrutura-Atividade , Especificidade por Substrato
3.
J Pharm Biomed Anal ; 189: 113450, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693204

RESUMO

A lateral flow immunoassay (LFIA) using latex particles labeled with antibody to BSA-clarithromycin (CLA) was developed for the rapid simultaneous group determination of six macrolide antibiotics. Optimization of antigen spotting on the membrane and latex probe loading allowed improving visual detectability (vLOD) 100 times, which was 1, 1, 10, 10, 50, and 1000 ng/mL for CLA, roxithromycin, erythromycin, dirithromycin, azithromycin, and oleandomycin in buffer, respectively. The calculated limits of instrumental detection (cLOD) were respectively 0.12, 0.15, 1.4, 2.1, 2.4, and 3.3 ng/mL. To avoid a strong influence of breast milk of a very diverse and variable composition, a sample pretreatment is proposed. The six macrolides mentioned can be visually detected in breast milk after 20 min pretreatment at concentrations of 10-1000 ng/mL or instrumentally with cLOD of 4.0, 2.5, 30, 42, 42 and 180 ng/mL. The recovery rate from the spiked samples carried out using a strip scanner device ranged from 71 % to 110 %, and precision expressed as relative standard deviation was between 3-14 %. The described rapid on-site diagnostic assay format can be useful for monitoring the content of antibiotics in breast milk during macrolide treatment to ensure safe breastfeeding of infants.


Assuntos
Macrolídeos , Leite Humano , Antibacterianos/análise , Claritromicina/análise , Humanos , Imunoensaio , Microesferas , Leite Humano/química
4.
Biochim Biophys Acta ; 1860(3): 465-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26475642

RESUMO

BACKGROUND: OleP is a cyt P450 from Streptomyces antibioticus carrying out epoxigenation of the antibiotic oleandomycin during its biosynthesis. The timing of its reaction has not been fully clarified, doubts remain regarding its substrate and catalytic mechanism. METHODS: The crystal structure of OleP in complex with clotrimazole, an inhibitor of P450s used in therapy, was solved and the complex formation dynamics was characterized by equilibrium and kinetic binding studies and compared to ketoconazole, another azole differing for the N1-substituent. RESULTS: Clotrimazole coordinates the heme and occupies the active site. Most of the residues interacting with clotrimazole are conserved and involved in substrate binding in MycG, the P450 epoxigenase with the highest homology with OleP. Kinetic characterization of inhibitor binding revealed OleP to follow a simple bimolecular reaction, without detectable intermediates. CONCLUSIONS: Clotrimazole-bound OleP adopts an open form, held by a π-π stacking chain that fastens helices F and G and the FG loop. Affinity is affected by the interactions of the N1 substituent within the active site, given the one order of magnitude difference of the off-rate constants between clotrimazole and ketoconazole. Based on structural similarities with MycG, we propose a binding mode for both oleandomycin intermediates, that are the candidate substrates of OleP. GENERAL SIGNIFICANCE: Among P450 epoxigenases OleP is the only one that introduces an epoxide on a non-activated C­C bond. The data here presented are necessary to understand the rare chemistry carried out by OleP, to engineer it and to design more selective and potent P450-targeted drugs.


Assuntos
Antibacterianos/biossíntese , Clotrimazol/química , Sistema Enzimático do Citocromo P-450/química , Oleandomicina/biossíntese , Oxirredutases/química , Streptomyces antibioticus/enzimologia , Domínio Catalítico , Cristalografia , Sistema Enzimático do Citocromo P-450/fisiologia , Oxirredutases/fisiologia , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA