Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Adv Healthc Mater ; : e2401815, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39188199

RESUMO

Enthesitis, the inflammation of the enthesis, which is the point of attachment of tendons and ligaments to bones, is a common musculoskeletal disease. The inflammation often originates from the fibrocartilage region of the enthesis as a consequence of mechanical overuse or -load and consequently tissue damage. During enthesitis, waves of inflammatory cytokines propagate in(to) the fibrocartilage, resulting in detrimental, heterotopic bone formation. Understanding of human enthesitis and its treatment options is limited, also because of lacking in vitro model systems that can closely mimic the pathophysiology of the enthesis and can be used to develop therapies. In this study, an enthes(it)is-on-chip model is developed. On opposite sides of a porous culture membrane separating the chip's two microfluidic compartments, human mesenchymal stromal cells are selectively differentiated into tenocytes and fibrochondrocytes. By introducing an inflammatory cytokine cocktail into the fibrochondrocyte compartment, key aspects of acute and chronic enthesitis, measured as increased expression of inflammatory markers, can be recapitulated. Upon inducing chronic inflammatory conditions, hydroxyapatite deposition, enhanced osteogenic marker expression and reduced secretion of tissue-related extracellular matrix components are observed. Adding the anti-inflammatory drug celecoxib to the fibrochondrocyte compartment mitigates the inflammatory state, demonstrating the potential of the enthesitis-on-chip model for drug testing.

2.
Adv Healthc Mater ; : e2401876, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101329

RESUMO

Microphysiological systems (MPSs) reconstitute tissue interfaces and organ functions, presenting a promising alternative to animal models in drug development. However, traditional materials like polydimethylsiloxane (PDMS) often interfere by absorbing hydrophobic molecules, affecting drug testing accuracy. Additive manufacturing, including 3D bioprinting, offers viable solutions. GlioFlow3D, a novel microfluidic platform combining extrusion bioprinting and stereolithography (SLA) is introduced. GlioFlow3D integrates primary human cells and glioblastoma (GBM) lines in hydrogel-based microchannels mimicking vasculature, within an SLA resin framework using cost-effective materials. The study introduces a robust protocol to mitigate SLA resin cytotoxicity. Compared to PDMS, GlioFlow3D demonstrated lower small molecule absorption, which is relevant for accurate testing of small molecules like Temozolomide (TMZ). Computational modeling is used to optimize a pumpless setup simulating interstitial fluid flow dynamics in tissues. Co-culturing GBM with brain endothelial cells in GlioFlow3D showed enhanced CD133 expression and TMZ resistance near vascular interfaces, highlighting spatial drug resistance mechanisms. This PDMS-free platform promises advanced drug testing, improving preclinical research and personalized therapy by elucidating complex GBM drug resistance mechanisms influenced by the tissue microenvironment.

3.
Acta Biomater ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39084496

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is one of the most common forms of valvulopathy, with a 50 % elevated risk of a fatal cardiovascular event, and greater than 15,000 annual deaths in North America alone. The treatment standard is valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. The development of early diagnostic and therapeutic strategies requires the fabrication of effective in vitro valve mimetic models to elucidate early CAVD mechanisms. METHODS: In this study, we developed a multilayered physiologically relevant 3D valve-on-chip (VOC) system that incorporated aortic valve mimetic extracellular matrix (ECM), porcine aortic valve interstitial cell (VIC) and endothelial cell (VEC) co-culture and dynamic mechanical stimuli. Collagen and glycosaminoglycan (GAG) based hydrogels were assembled in a bilayer to mimic healthy or diseased compositions of the native fibrosa and spongiosa. Multiphoton imaging and proteomic analysis of healthy and diseased VOCs were performed. RESULTS: Collagen-based bilayered hydrogel maintained the phenotype of the VICs. Proteins related to cellular processes like cell cycle progression, cholesterol biosynthesis, and protein homeostasis were found to be significantly altered and correlated with changes in cell metabolism in diseased VOCs. This study suggested that diseased VOCs may represent an early, adaptive disease initiation stage, which was corroborated by human aortic valve proteomic assessment. CONCLUSIONS: In this study, we developed a collagen-based bilayered hydrogel to mimic healthy or diseased compositions of the native fibrosa and spongiosa layers. When the gels were assembled in a VOC with VECs and VICs, the diseased VOCs revealed key insights about the CAVD initiation process. STATEMENT OF SIGNIFICANCE: Calcific aortic valve disease (CAVD) elevates the risk of death due to cardiovascular pathophysiology by 50 %, however, prevention and mitigation strategies are lacking, clinically. Developing tools to assess early disease would significantly aid in the prevention of disease and in the development of therapeutics. Previously, studies have utilized collagen and glycosaminoglycan-based hydrogels for valve cell co-cultures, valve cell co-cultures in dynamic environments, and inorganic polymer-based multilayered hydrogels; however, these approaches have not been combined to make a physiologically relevant model for CAVD studies. We fabricated a bi-layered hydrogel that closely mimics the aortic valve and used it for valve cell co-culture in a dynamic platform to gain mechanistic insights into the CAVD initiation process using proteomic and multiphoton imaging assessment.

4.
ACS Appl Mater Interfaces ; 16(32): 41892-41906, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39078878

RESUMO

Spontaneous preterm birth (PTB) affects around 11% of births, posing significant risks to neonatal health due to the inflammation at the fetal-maternal interface (FMi). This inflammation disrupts immune tolerance during pregnancy, often leading to PTB. While organ-on-a-chip (OOC) devices effectively mimic the physiology, pathophysiology, and responses of FMi, their relatively low throughput limits their utility in high-throughput testing applications. To overcome this, we developed a three-dimensional (3D)-printed model that fits in a well of a 96-well plate and can be mass-produced while also accurately replicating FMi, enabling efficient screening of drugs targeting FMi inflammation. Our model features two cell culture chambers (maternal and fetal cells) interlinked via an array of microfluidic channels. It was thoroughly validated, ensuring cell viability, metabolic activity, and cell-specific markers. The maternal chamber was exposed to lipopolysaccharides (LPS) to induce an inflammatory state, and proinflammatory cytokines in the culture supernatant were quantified. Furthermore, the efficacy of anti-inflammatory inhibitors in mitigating LPS-induced inflammation was investigated. Results demonstrated that our model supports robust cell growth, maintains viability, and accurately mimics PTB-associated inflammation. This high-throughput 3D-printed model offers a versatile platform for drug screening, promising advancements in drug discovery and PTB prevention.


Assuntos
Nascimento Prematuro , Impressão Tridimensional , Feminino , Humanos , Gravidez , Lipopolissacarídeos/farmacologia , Dispositivos Lab-On-A-Chip , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Inflamação/tratamento farmacológico
5.
Expert Opin Drug Deliv ; 21(7): 1007-1027, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001669

RESUMO

INTRODUCTION: Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. AREAS COVERED: In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. EXPERT OPINION: Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Genitália Feminina , Humanos , Feminino , Administração Intravaginal , Materiais Biocompatíveis/administração & dosagem , Animais , Modelos Biológicos , Doenças dos Genitais Femininos/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Técnicas de Cultura de Células , Portadores de Fármacos/química
6.
Adv Sci (Weinh) ; : e2401415, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965824

RESUMO

Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate. Following protracted neutron radiation, the most damaging radiation component in deep space, a greater deviation of tissue function is observed as compared to the same cumulative dose delivered acutely. Further, by characterizing engineered bone marrow (eBM)-derived immune cells in circulation, 58 unique genes specific to the effects of protracted neutron dosing are identified, as compared to acutely irradiated and healthy tissues. It propose that this bioengineered platform allows studies of human responses to extended radiation exposure in an "astronaut-on-a-chip" model that can inform measures for mitigating cosmic radiation injury.

7.
Biomed Microdevices ; 26(3): 32, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963644

RESUMO

Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.


Assuntos
Líquido Amniótico , Membranas Extraembrionárias , Dispositivos Lab-On-A-Chip , Humanos , Líquido Amniótico/citologia , Membranas Extraembrionárias/citologia , Membranas Extraembrionárias/metabolismo , Âmnio/citologia , Âmnio/metabolismo , Sobrevivência Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Movimento (Física) , Estresse Oxidativo , Modelos Biológicos , Sistemas Microfisiológicos
9.
Curr Pharm Des ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859792

RESUMO

Organ-on-chip is an innovative technique that emerged from tissue engineering and microfluidic technologies. Organ-on-chip devices (OoCs) are anticipated to provide efficient resolutions to dealing with challenges in pharmaceutical advancement and individualized illness therapies. Organ-on-chip is an advanced method that can replicate human organs' physiological conditions and functions on a small chip. It possesses the capacity to greatly transform the drug development process by enabling the simulation of diseases and the testing of drugs. Effective integration of this advanced technical platform with common pharmaceutical and medical contexts is still a challenge. Microfluidic technology, a micro-level technique, has become a potent tool for biomedical engineering research. As a result, it has revolutionized disciplines including physiological material interpreting, compound detection, cell-based assay, tissue engineering, biological diagnostics, and pharmaceutical identification. This article aims to offer an overview of newly developed organ-on-a-chip systems. It includes single-organ platforms, emphasizing the most researched organs, including the heart, liver, blood arteries, and lungs. Subsequently, it provides a concise overview of tumour-on-a-chip systems and emphasizes their use in the evaluation of anti-cancer medications.

10.
Biofabrication ; 16(4)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38866002

RESUMO

Early detection of tumours remains a significant challenge due to their invasive nature and the limitations of current monitoring techniques. Liquid biopsies have emerged as a minimally invasive diagnostic approach, wherein volatile organic compounds (VOCs) show potential as compelling candidates. However, distinguishing tumour-specific VOCs is difficult due to the presence of gases from non-tumour tissues and environmental factors. Therefore, it is essential to develop preclinical models that accurately mimic the intricate tumour microenvironment to induce cellular metabolic changes and secretion of tumour-associated VOCs. In this study, a microfluidic device was used to recreate the ischaemic environment within solid tumours for the detection of tumour-derived VOCs. The system represents a significant advance in understanding the role of VOCs as biomarkers for early tumour detection and holds the potential to improve patient prognosis; particularly for inaccessible and rapidly progressing tumours such as glioblastoma.


Assuntos
Biomarcadores Tumorais , Progressão da Doença , Dispositivos Lab-On-A-Chip , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
11.
EMBO Mol Med ; 16(7): 1630-1656, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877290

RESUMO

Thymic stromal lymphopoietin (TSLP) is a key player in atopic diseases, which has sparked great interest in therapeutically targeting TSLP. Yet, no small-molecule TSLP inhibitors exist due to the challenges of disrupting the protein-protein interaction between TSLP and its receptor. Here, we report the development of small-molecule TSLP receptor inhibitors using virtual screening and docking of >1,000,000 compounds followed by iterative chemical synthesis. BP79 emerged as our lead compound that effectively abrogates TSLP-triggered cytokines at low micromolar concentrations. For in-depth analysis, we developed a human atopic disease drug discovery platform using multi-organ chips. Here, topical application of BP79 onto atopic skin models that were co-cultivated with lung models and Th2 cells effectively suppressed immune cell infiltration and IL-13, IL-4, TSLP, and periostin secretion, while upregulating skin barrier proteins. RNA-Seq analysis corroborate these findings and indicate protective downstream effects on the lungs. To the best of our knowledge, this represents the first report of a potent putative small molecule TSLPR inhibitor which has the potential to expand the therapeutic and preventive options in atopic diseases.


Assuntos
Citocinas , Receptores de Citocinas , Linfopoietina do Estroma do Timo , Humanos , Citocinas/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Citocinas/antagonistas & inibidores , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Animais , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Ligação Proteica/efeitos dos fármacos , Interleucina-4/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Simulação de Acoplamento Molecular
12.
Sci Rep ; 14(1): 11157, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834598

RESUMO

Snakebite envenomation is a major public health issue which causes severe morbidity and mortality, affecting millions of people annually. Of a diverse range of clinical manifestations, local and systemic haemorrhage are of particular relevance, as this may result in ischemia, organ failure and even cardiovascular shock. Thus far, in vitro studies have failed to recapitulate the haemorrhagic effects observed in vivo. Here, we present an organ-on-a-chip approach to investigate the effects of four different snake venoms on a perfused microfluidic blood vessel model. We assess the effect of the venoms of four snake species on epithelial barrier function, cell viability, and contraction/delamination. Our findings reveal two different mechanisms by which the microvasculature is being affected, either by disruption of the endothelial cell membrane or by delamination of the endothelial cell monolayer from its matrix. The use of our blood vessel model may shed light on the key mechanisms by which tissue-damaging venoms exert their effects on the capillary vessels, which could be helpful for the development of effective treatments against snakebites.


Assuntos
Dispositivos Lab-On-A-Chip , Venenos de Serpentes , Animais , Humanos , Células Endoteliais/efeitos dos fármacos , Hemorragia , Sobrevivência Celular/efeitos dos fármacos , Mordeduras de Serpentes/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sistemas Microfisiológicos
13.
Cell Rep ; 43(7): 114247, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38907996

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.


Assuntos
Diferenciação Celular , Células Epiteliais , Células-Tronco Pluripotentes Induzidas , Intestino Delgado , Neurônios , Organoides , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Organoides/metabolismo , Organoides/citologia , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia
14.
Biofabrication ; 16(4)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38866003

RESUMO

Tumor-on-chips (ToCs) are useful platforms for studying the physiology of tumors and evaluating the efficacy and toxicity of anti-cancer drugs. However, the design and fabrication of a ToC system is not a trivial venture. We introduce a user-friendly, flexible, 3D-printed microfluidic device that can be used to culture cancer cells or cancer-derived spheroids embedded in hydrogels under well-controlled environments. The system consists of two lateral flow compartments (left and right sides), each with two inlets and two outlets to deliver cell culture media as continuous liquid streams. The central compartment was designed to host a hydrogel in which cells and microtissues can be confined and cultured. We performed tracer experiments with colored inks and 40 kDa fluorescein isothiocyanate dextran to characterize the transport/mixing performances of the system. We also cultured homotypic (MCF7) and heterotypic (MCF7-BJ) spheroids embedded in gelatin methacryloyl hydrogels to illustrate the use of this microfluidic device in sustaining long-term micro-tissue culture experiments. We further demonstrated the use of this platform in anticancer drug testing by continuous perfusion of doxorubicin, a commonly used anti-cancer drug for breast cancer. In these experiments, we evaluated drug transport, viability, glucose consumption, cell death (apoptosis), and cytotoxicity. In summary, we introduce a robust and friendly ToC system capable of recapitulating relevant aspects of the tumor microenvironment for the study of cancer physiology, anti-cancer drug transport, efficacy, and safety. We anticipate that this flexible 3D-printed microfluidic device may facilitate cancer research and the development and screening of strategies for personalized medicine.


Assuntos
Antineoplásicos , Neoplasias da Mama , Impressão Tridimensional , Esferoides Celulares , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Células MCF-7 , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Dextranos/química , Gelatina/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Sobrevivência Celular/efeitos dos fármacos , Metacrilatos
15.
Stem Cell Reports ; 19(7): 946-956, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38876110

RESUMO

Functionality of the blood-brain barrier (BBB) relies on the interaction between endothelial cells (ECs), pericytes, and astrocytes to regulate molecule transport within the central nervous system. Most experimental models for the BBB rely on freshly isolated primary brain cells. Here, we explored human induced pluripotent stem cells (hiPSCs) as a cellular source for astrocytes in a 3D vessel-on-chip (VoC) model. Self-organized microvascular networks were formed by combining hiPSC-derived ECs, human brain vascular pericytes, and hiPSC-derived astrocytes within a fibrin hydrogel. The hiPSC-ECs and pericytes showed close interactions, but, somewhat unexpectedly, addition of astrocytes disrupted microvascular network formation. However, continuous fluid perfusion or activation of cyclic AMP (cAMP) signaling rescued the vascular organization and decreased vascular permeability. Nevertheless, astrocytes did not affect the expression of proteins related to junction formation, transport, or extracellular matrix, indicating that, despite other claims, hiPSC-derived ECs do not entirely acquire a BBB-like identity in the 3D VoC model.


Assuntos
Astrócitos , Barreira Hematoencefálica , Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Astrócitos/metabolismo , Astrócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Diferenciação Celular , Dispositivos Lab-On-A-Chip , Células Cultivadas , Hidrogéis , AMP Cíclico/metabolismo , Modelos Biológicos
16.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928228

RESUMO

Recent advancements in stem cell biology and tissue engineering have revolutionized the field of neurodegeneration research by enabling the development of sophisticated in vitro human brain models. These models, including 2D monolayer cultures, 3D organoids, organ-on-chips, and bioengineered 3D tissue models, aim to recapitulate the cellular diversity, structural organization, and functional properties of the native human brain. This review highlights how these in vitro brain models have been used to investigate the effects of various pathogens, including viruses, bacteria, fungi, and parasites infection, particularly in the human brain cand their subsequent impacts on neurodegenerative diseases. Traditional studies have demonstrated the susceptibility of different 2D brain cell types to infection, elucidated the mechanisms underlying pathogen-induced neuroinflammation, and identified potential therapeutic targets. Therefore, current methodological improvement brought the technology of 3D models to overcome the challenges of 2D cells, such as the limited cellular diversity, incomplete microenvironment, and lack of morphological structures by highlighting the need for further technological advancements. This review underscored the significance of in vitro human brain cell from 2D monolayer to bioengineered 3D tissue model for elucidating the intricate dynamics for pathogen infection modeling. These in vitro human brain cell enabled researchers to unravel human specific mechanisms underlying various pathogen infections such as SARS-CoV-2 to alter blood-brain-barrier function and Toxoplasma gondii impacting neural cell morphology and its function. Ultimately, these in vitro human brain models hold promise as personalized platforms for development of drug compound, gene therapy, and vaccine. Overall, we discussed the recent progress in in vitro human brain models, their applications in studying pathogen infection-related neurodegeneration, and future directions.


Assuntos
Encéfalo , Doenças Neurodegenerativas , Humanos , Encéfalo/patologia , Encéfalo/virologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/virologia , COVID-19/virologia , SARS-CoV-2/fisiologia , Organoides/virologia , Organoides/patologia , Modelos Biológicos , Engenharia Tecidual/métodos , Barreira Hematoencefálica/metabolismo
17.
Front Immunol ; 15: 1373186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835750

RESUMO

Impressive advances have been made to replicate human physiology in vitro over the last few years due to the growth of the organ-on-chip (OoC) field in both industrial and academic settings. OoCs are a type of microphysiological system (MPS) that imitates functional and dynamic aspects of native human organ biology on a microfluidic device. Organoids and organotypic models, ranging in their complexity from simple single-cell to complex multi-cell type constructs, are being incorporated into OoC microfluidic devices to better mimic human physiology. OoC technology has now progressed to the stage at which it has received official recognition by the Food and Drug Administration (FDA) for use as an alternative to standard procedures in drug development, such as animal studies and traditional in vitro assays. However, an area that is still lagging behind is the incorporation of the immune system, which is a critical element required to investigate human health and disease. In this review, we summarise the progress made to integrate human immunology into various OoC systems, specifically focusing on models related to organ barriers and lymphoid organs. These models utilise microfluidic devices that are either commercially available or custom-made. This review explores the difference between the use of innate and adaptive immune cells and their role for modelling organ-specific diseases in OoCs. Immunocompetent multi-OoC models are also highlighted and the extent to which they recapitulate systemic physiology is discussed. Together, the aim of this review is to describe the current state of immune-OoCs, the limitations and the future perspectives needed to improve the field.


Assuntos
Dispositivos Lab-On-A-Chip , Humanos , Animais , Organoides/imunologia , Imunocompetência
18.
Cell Stem Cell ; 31(8): 1175-1186.e7, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876106

RESUMO

Organoids and organs-on-a-chip have emerged as powerful tools for modeling human gut physiology and disease in vitro. Although physiologically relevant, these systems often lack the environmental milieu, spatial organization, cell type diversity, and maturity necessary for mimicking human intestinal mucosa. To instead generate models closely resembling in vivo tissue, we herein integrated organoid and organ-on-a-chip technology to develop an advanced human organoid model, called "mini-colons." By employing an asymmetric stimulation with growth factors, we greatly enhanced tissue longevity and replicated in vivo-like diversity and patterning of proliferative and differentiated cell types. Mini-colons contain abundant mucus-producing goblet cells and, signifying mini-colon maturation, single-cell RNA sequencing reveals emerging mature and functional colonocytes. This methodology is expanded to generate microtissues from the small intestine and incorporate additional microenvironmental components. Finally, our bioengineered organoids provide a precise platform to systematically study human gut physiology and pathology, and a reliable preclinical model for drug safety assessment.


Assuntos
Bioengenharia , Colo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Organoides , Organoides/citologia , Organoides/fisiologia , Colo/citologia , Colo/efeitos dos fármacos , Colo/fisiologia , Pirrolidinas/toxicidade , para-Aminobenzoatos/toxicidade , Proliferação de Células , Diferenciação Celular , Intestino Delgado/citologia
20.
Phys Med Biol ; 69(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38744305

RESUMO

This review casts a spotlight on intraoperative positron emission tomography (PET) scanners and the distinctive challenges they confront. Specifically, these systems contend with the necessity of partial coverage geometry, essential for ensuring adequate access to the patient. This inherently leans them towards limited-angle PET imaging, bringing along its array of reconstruction and geometrical sensitivity challenges. Compounding this, the need for real-time imaging in navigation systems mandates rapid acquisition and reconstruction times. For these systems, the emphasis is on dependable PET image reconstruction (without significant artefacts) while rapid processing takes precedence over the spatial resolution of the system. In contrast, specimen PET imagers are unburdened by the geometrical sensitivity challenges, thanks to their ability to leverage full coverage PET imaging geometries. For these devices, the focus shifts: high spatial resolution imaging takes precedence over rapid image reconstruction. This review concurrently probes into the technical complexities of both intraoperative and specimen PET imaging, shedding light on their recent designs, inherent challenges, and technological advancements.


Assuntos
Processamento de Imagem Assistida por Computador , Salas Cirúrgicas , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/instrumentação , Humanos , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA