Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(6)2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37368705

RESUMO

Buffelgrass (Cenchrus ciliaris L.) is an invasive C4 perennial grass species that substantially reduces native plant diversity of the Sonoran Desert through fire promotion and resource competition. Broad-spectrum herbicides are essentially used for its control, but they have a negative environmental and ecological impact. Recently, phytotoxicity on C. ciliaris has been discovered for two metabolites produced in vitro by the phytopathogenic fungi Cochliobolus australiensis and Pyricularia grisea. They were identified as (10S,11S)-(-)-epi-pyriculol and radicinin and resulted in being potential candidates for the development of bioherbicides for buffelgrass biocontrol. They have already shown promising results, but their ecotoxicological profiles and degradability have been poorly investigated. In this study, ecotoxicological tests against representative organisms from aquatic ecosystems (Aliivibrio fischeri bacterium, Raphidocelis subcapitata alga, and Daphnia magna crustacean) revealed relatively low toxicity for these compounds, supporting further studies for their practical application. The stability of these metabolites in International Organization for Standardization (ISO) 8692:2012 culture medium under different temperatures and light conditions was also evaluated, revealing that 98.90% of radicinin degraded after 3 days in sunlight. Significant degradation percentages (59.51-73.82%) were also obtained at room temperature, 30 °C or under ultraviolet (254 nm) light exposure. On the other hand, (10S,11S)-epi-pyriculol showed more stability under all the aforementioned conditions (49.26-65.32%). The sunlight treatment was also shown to be most effective for the degradation of this metabolite. These results suggest that radicinin could provide rapid degradability when used in agrochemical formulations, whereas (10S,11S)-epi-pyriculol stands as a notably more stable compound.


Assuntos
Cenchrus , Poluentes Químicos da Água , Cenchrus/química , Ecossistema , Ecotoxicologia
2.
J Fungi (Basel) ; 9(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36983484

RESUMO

(10S,11S)-(-)-epi-pyriculol is a phytotoxic metabolite produced by Pyricularia grisea, a fungus identified as a foliar pathogen on the invasive weed species buffelgrass (Cenchrus ciliaris) in North America. The effective control of buffelgrass has not yet been achieved, and there is a need to develop effective and green solutions. Herbicides based on natural products and the use of phytopathogenic organisms could provide the most suitable tools for the control of weeds such as buffelgrass. Thus, one of the most relevant points to study about potential suitable phytotoxins such as (10S,11S)-(-)-epi-pyriculol is its production on a large scale, either by isolation from fungal fermentations or by synthesis. For these purposes, rapid and sensitive methods for the quantification of (10S,11S)-(-)-epi-pyriculol in complex mixtures are required. In this study, a high-pressure liquid chromatography (HPLC) method for its quantification was developed and applied to organic extracts from twelve P. grisea isolates obtained from diseased buffelgrass leaves and grown in potato dextrose broth (PDB) liquid cultures. The analysis proved that the production of (10S,11S)-(-)-epi-pyriculol is fungal-isolate dependent and strongly correlated with phytotoxic activity, shown by the P. grisea organic extracts in a buffelgrass radicle elongation test. The HPLC method reported herein allowed us to select the best strain for the production of (10S,11S)-(-)-epi-pyriculol and could be useful for selecting the best cultural conditions for its mass production, providing a tool for the use of this promising metabolite as a new bioherbicide for the control of buffelgrass.

3.
Biosci Biotechnol Biochem ; 85(1): 126-133, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577666

RESUMO

Pyricularia oryzae is one of the most devastating plant pathogens in the world. This fungus produces several secondary metabolites including the phytotoxin pyriculols, which are classified into 2 types: aldehyde form (pyriculol and pyriculariol) and alcohol form (dihydropyriculol and dihydropyriculariol). Although interconversion between the aldehyde form and alcohol form has been predicted, and the PYC10 gene for the oxidation of alcohol form to aldehyde is known, the gene responsible for the reduction of aldehyde to alcohol form is unknown. Furthermore, previous studies have predicted that alcohol analogs are biosynthesized via aldehyde analogs. Herein, we demonstrated that an aldo/keto reductase PYC7 is responsible for the reduction of aldehyde to alcohol congeners. The results indicate that aldehyde analogs are biosynthesized via alcohol analogs, contradicting the previous prediction. The results suggest that P. oryzae controls the amount of pyriculol analogs using two oxidoreductases, PYC7 and PYC10, thereby controlling the bioactivity of the phytotoxin.


Assuntos
Aldeído Redutase/metabolismo , Ascomicetos/metabolismo , Benzaldeídos/metabolismo , Álcoois Graxos/metabolismo , Micotoxinas/biossíntese , Benzaldeídos/química , Álcoois Graxos/química , Micotoxinas/química
4.
Molecules ; 24(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893868

RESUMO

The fungal pathogens Cochliobolus australiensis and Pyricularia grisea have recently been isolated from diseased leaves of buffelgrass (Cenchrus ciliaris) in its North American range, and their ability to produce phytotoxic metabolites that could potentially be used as natural herbicides against this invasive weed was investigated. Fourteen secondary metabolites obtained from in vitro cultures of these two pathogens were tested by leaf puncture assay on the host plant at different concentrations. Radicinin and (10S, 11S)-epi-pyriculol proved to be the most promising compounds. Thus, their phytotoxic activity was also evaluated on non-host indigenous plants. Radicinin demonstrated high target-specific toxicity on buffelgrass, low toxicity to native plants, and no teratogenic, sub-lethal, or lethal effects on zebrafish (Brachydanio rerio) embryos. It is now under consideration for the development of a target-specific bioherbicide to be used against buffelgrass in natural systems where synthetic herbicides cause excessive damage to native plants.


Assuntos
Cenchrus/efeitos dos fármacos , Herbicidas/imunologia , Herbicidas/farmacologia , Pironas/farmacologia , Animais , Benzaldeídos/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Álcoois Graxos/farmacologia , Peixe-Zebra
5.
Biosci Biotechnol Biochem ; 62(1): 173-4, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-27393365

RESUMO

A new pyriculol-related phytotoxin, designated as pyricuol (1), was isolated from a liquid culture of Magnaporthe grisea, the causal fungus of rice blast disease, together with two known metabolites, pyriculol (2) and dihydropyriculol. Its structure was determined on the basis of physicochemical and spectroscopic data to be 2-(3-hydroxymethyl-1,4-hexadienyl)-6-hydroxybenzaldehyde.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA