Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 882158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784728

RESUMO

It is well documented that the endocrine hormone, leptin controls energy homeostasis by providing key signals to specific hypothalamic nuclei. However, our knowledge of leptin's central actions has advanced considerably over the last 20 years, with the hippocampus now established as an important brain target for this hormone. Leptin receptors are highly localised to hippocampal synapses, and increasing evidence reveals that activation of synaptically located leptin receptors markedly impacts cognitive processes, and specifically hippocampal-dependent learning and memory. Here, we review the recent actions of leptin at hippocampal synapses and explore the consequences for brain health and disease.

2.
Front Synaptic Neurosci ; 13: 790773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887741

RESUMO

The precise subsynaptic organization of proteins at the postsynaptic membrane controls synaptic transmission. In particular, postsynaptic receptor complexes are concentrated in distinct membrane nanodomains to optimize synaptic signaling. However, despite the clear functional relevance of subsynaptic receptor organization to synaptic transmission and plasticity, the mechanisms that underlie the nanoscale organization of the postsynaptic membrane remain elusive. Over the last decades, the field has predominantly focused on the role of protein-protein interactions in receptor trafficking and positioning in the synaptic membrane. In contrast, the contribution of lipids, the principal constituents of the membrane, to receptor positioning at the synapse remains poorly understood. Nevertheless, there is compelling evidence that the synaptic membrane is enriched in specific lipid species and that deregulation of lipid homeostasis in neurons severely affects synaptic functioning. In this review we focus on how lipids are organized at the synaptic membrane, with special emphasis on how current models of membrane organization could contribute to protein distribution at the synapse and synaptic transmission. Finally, we will present an outlook on how novel technical developments could be applied to study the dynamic interplay between lipids and proteins at the postsynaptic membrane.

3.
Front Mol Neurosci ; 14: 754631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720876

RESUMO

Regulated delivery of AMPA receptors (AMPARs) to the postsynaptic membrane is an essential step in synaptic strength modification, and in particular, long-term potentiation (LTP). While LTP has been extensively studied using electrophysiology and light microscopy, several questions regarding the molecular mechanisms of AMPAR delivery via trafficking vesicles remain outstanding, including the gross molecular make up of AMPAR trafficking organelles and identification and location of calcium sensors required for SNARE complex-dependent membrane fusion of such trafficking vesicles with the plasma membrane. Here, we isolated AMPA-containing vesicles (ACVs) from whole mouse brains via immunoisolation and characterized them using immunoelectron microscopy, immunoblotting, and liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified several proteins on ACVs that were previously found to play a role in AMPAR trafficking, including synaptobrevin-2, Rabs, the SM protein Munc18-1, the calcium-sensor synaptotagmin-1, as well as several new candidates, including synaptophysin and synaptogyrin on ACV membranes. Additionally, we identified two populations of ACVs based on size and molecular composition: small-diameter, synaptobrevin-2- and GluA1-containing ACVs, and larger transferrin- receptor-, GluA1-, GluA2-, and GluA3-containing ACVs. The small-diameter population of ACVs may represent a fusion-capable population of vesicles due to the presence of synaptobrevin-2. Because the fusion of ACVs may be a requisite of LTP, this population could represent trafficking vesicles related to LTP.

4.
Front Behav Neurosci ; 15: 662129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859556

RESUMO

Understanding the nature of the molecular mechanisms underlying memory formation, consolidation, and forgetting are some of the fascinating questions in modern neuroscience. The encoding, stabilization and elimination of memories, rely on the structural reorganization of synapses. These changes will enable the facilitation or depression of neural activity in response to the acquisition of new information. In other words, these changes affect the weight of specific nodes within a neural network. We know that these plastic reorganizations require de novo protein synthesis in the context of Long-term memory (LTM). This process depends on neural activity triggered by the learned experience. The use of model organisms like Drosophila melanogaster has been proven essential for advancing our knowledge in the field of neuroscience. Flies offer an optimal combination of a more straightforward nervous system, composed of a limited number of cells, and while still displaying complex behaviors. Studies in Drosophila neuroscience, which expanded over several decades, have been critical for understanding the cellular and molecular mechanisms leading to the synaptic and behavioral plasticity occurring in the context of learning and memory. This is possible thanks to sophisticated technical approaches that enable precise control of gene expression in the fruit fly as well as neural manipulation, like chemogenetics, thermogenetics, or optogenetics. The search for the identity of genes expressed as a result of memory acquisition has been an active interest since the origins of behavioral genetics. From screenings of more or less specific candidates to broader studies based on transcriptome analysis, our understanding of the genetic control behind LTM has expanded exponentially in the past years. Here we review recent literature regarding how the formation of memories induces a rapid, extensive and, in many cases, transient wave of transcriptional activity. After a consolidation period, transcriptome changes seem more stable and likely represent the synthesis of new proteins. The complexity of the circuitry involved in memory formation and consolidation is such that there are localized changes in neural activity, both regarding temporal dynamics and the nature of neurons and subcellular locations affected, hence inducing specific temporal and localized changes in protein expression. Different types of neurons are recruited at different times into memory traces. In LTM, the synthesis of new proteins is required in specific subsets of cells. This de novo translation can take place in the somatic cytoplasm and/or locally in distinct zones of compartmentalized synaptic activity, depending on the nature of the proteins and the plasticity-inducing processes that occur. We will also review recent advances in understanding how localized changes are confined to the relevant synapse. These recent studies have led to exciting discoveries regarding proteins that were not previously involved in learning and memory processes. This invaluable information will lead to future functional studies on the roles that hundreds of new molecular actors play in modulating neural activity.

5.
Front Neural Circuits ; 14: 541728, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117130

RESUMO

It is commonly assumed that memories about experienced stimuli are represented by groups of highly interconnected neurons called cell assemblies. This requires allocating and storing information in the neural circuitry, which happens through synaptic weight adaptations at different types of synapses. In general, memory allocation is associated with synaptic changes at feed-forward synapses while memory storage is linked with adaptation of recurrent connections. It remains, however, largely unknown how memory allocation and storage can be achieved and the adaption of the different synapses involved be coordinated to allow for a faithful representation of multiple memories without disruptive interference between them. In this theoretical study, by using network simulations and phase space analyses, we show that the interplay between long-term synaptic plasticity and homeostatic synaptic scaling organizes simultaneously the adaptations of feed-forward and recurrent synapses such that a new stimulus forms a new memory and where different stimuli are assigned to distinct cell assemblies. The resulting dynamics can reproduce experimental in-vivo data, focusing on how diverse factors, such as neuronal excitability and network connectivity, influence memory formation. Thus, the here presented model suggests that a few fundamental synaptic mechanisms may suffice to implement memory allocation and storage in neural circuitry.


Assuntos
Memória/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Humanos , Modelos Neurológicos , Rede Nervosa , Redes Neurais de Computação
6.
Mol Neurobiol ; 53(6): 3740-3752, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26141123

RESUMO

Lead (Pb) is an environmental neurotoxic metal. Pb exposure may cause neurobehavioral changes, such as learning and memory impairment, and adolescence violence among children. Previous animal models have largely focused on the effects of Pb exposure during early development (from gestation to lactation period) on neurobehavior. In this study, we exposed Sprague-Dawley rats during the juvenile stage (from juvenile period to adult period). We investigated the synaptic function and structural changes and the relationship of these changes to neurobehavioral deficits in adult rats. Our results showed that juvenile Pb exposure caused fear-conditioned memory impairment and anxiety-like behavior, but locomotion and pain behavior were indistinguishable from the controls. Electrophysiological studies showed that long-term potentiation induction was affected in Pb-exposed rats, and this was probably due to excitatory synaptic transmission impairment in Pb-exposed rats. We found that NMDA and AMPA receptor-mediated current was inhibited, whereas the GABA synaptic transmission was normal in Pb-exposed rats. NR2A and phosphorylated GluR1 expression decreased. Moreover, morphological studies showed that density of dendritic spines declined by about 20 % in the Pb-treated group. The spine showed an immature form in Pb-exposed rats, as indicated by spine size measurements. However, the length and arborization of dendrites were unchanged. Our results suggested that juvenile Pb exposure in rats is associated with alterations in the glutamate receptor, which caused synaptic functional and morphological changes in hippocampal CA1 pyramidal neurons, thereby leading to behavioral changes.


Assuntos
Hipocampo/patologia , Hipocampo/fisiopatologia , Chumbo/toxicidade , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Ansiedade/patologia , Ansiedade/fisiopatologia , Comportamento Animal , Condicionamento Psicológico/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Regulação para Baixo/efeitos dos fármacos , Medo , Ácido Glutâmico/metabolismo , Hipocampo/crescimento & desenvolvimento , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia
7.
Neuroscience ; 268: 75-86, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24637095

RESUMO

Bryostatin-1, a potent agonist of protein kinase C (PKC), has recently been found to enhance spatial learning and long-term memory in rats, mice, rabbits and the nudibranch Hermissenda, and to exert profound neuroprotective effects on Alzheimer's disease (AD) in transgenic mice. However, details of the mechanistic effects of bryostatin on learning and memory remain unclear. To address this issue, whole-cell recording, a dual-recording approach and extracellular recording techniques were performed on young (2-4months) Brown-Norway rats. We found that bath-applied bryostatin-1 significantly increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). The firing rate of GABAergic interneurons significantly was also increased as recorded with a loosely-attached extracellular recording configuration. Simultaneous recordings from communicating cell pairs of interneuron and pyramidal neuron revealed unique activity-dependent properties of GABAergic synapses. Furthermore, the bryostatin-induced increase of the frequency and amplitude of IPSCs was blocked by methionine enkephalin which selectively suppressed the excitability of interneurons. Pretreatment with RO-32-0432, a relatively specific PKCα antagonist, blocked the effect of bryostatin on sIPSCs. Finally, bryostatin increased paired-pulse ratio of GABAergic synapses that lasted for at least 20min while pretreatment with RO-32-0432 significantly reduced the ratio. In addition, 8-[2-(2-pentyl-cyclopropylmethl)-cyclopropyl]-octanoic acid (DCP-LA), a selective PKCε activator, also increased the frequency and amplitude of sIPSCs. Taken together, these results suggest that bryostatin enhances GABAergic neurotransmission in pyramidal neurons by activating the PKCα & ε-dependent pathway and by a presynaptic mechanism with excitation of GABAergic interneurons. These effects of bryostatin on GABAergic transmissions and modifiability may contribute to the improvement of learning and memory previously observed to be induced by bryostatin.


Assuntos
Briostatinas/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Região CA1 Hipocampal/fisiologia , Caprilatos/farmacologia , Encefalina Metionina/farmacologia , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Células Piramidais/fisiologia , Pirróis/farmacologia , Ratos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA