Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 2(6): 100154, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32995714

RESUMO

BACKGROUND & AIMS: Iron reduction by venesection has been the cornerstone of treatment for haemochromatosis for decades, and its reported health benefits are many. Repeated phlebotomy can lead to a compensatory increase in intestinal iron absorption, reducing intestinal iron availability. Given that most gut bacteria are highly dependent on iron for survival, we postulated that, by reducing gut iron levels, venesection could alter the gut microbiota. METHODS: Clinical parameters, faecal bacterial composition and metabolomes were assessed before and during treatment in a group of patients with haemochromatosis undergoing iron reduction therapy. RESULTS: Systemic iron reduction was associated with an alteration of the gut microbiome, with changes evident in those who experienced reduced faecal iron availability with venesection. For example, levels of Faecalibacterium prausnitzii, a bacterium associated with improved colonic health, were increased in response to faecal iron reduction. Similarly, metabolomic changes were seen in association with reduced faecal iron levels. CONCLUSION: These findings highlight a significant shift in the gut microbiome of patients who experience reduced colonic iron during venesection. Targeted depletion of faecal iron could represent a novel therapy for metabolic and inflammatory diseases, meriting further investigation. LAY SUMMARY: Iron depletion by repeated venesection is the mainstay of treatment for haemochromatosis, an iron-overload disorder. Venesection has been associated with several health benefits, including improvements in liver function tests, reversal of liver scarring, and reduced risk of liver cancer. During iron depletion, iron absorption from the gastrointestinal (GI) tract increases to compensate for iron lost with treatment. Iron availability is limited in the GI tract and is crucial to the growth and function of many gut bacteria. In this study we show that reduced iron availability in the colon following venesection treatment leads to a change in the composition of the gut bacteria, a finding that, to date, has not been studied in patients with haemochromatosis.

2.
World Allergy Organ J ; 12(1): 100005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30937130

RESUMO

BACKGROUND: Allergic rhinitis is the main symptom of pollinosis, relieved by non-specific treatment universally. This study aimed to find the changes of serum metabolites between the seizure and remission periods of pollinosis and provide assistance in the diagnosis and/or therapy. METHODS: Metabonomics based on 1H nuclear magnetic resonance (NMR) was used to study the 37 serum samples of pollinosis patients. RESULTS: We believed that the decreased levels of isoleutine, leutine, valine, 3-hydroxybutyric acid, allo-threonine, alanine, methionine, glutamine, lysine, glycine, l-tyrosine, histidine, phenylalanine, lactate, acetate, O-acetylcholine, creatine and creatinine and the increased level of N-acetylglutamine at the seizure stage were statistically significant. CONCLUSIONS: Pollinosis could change the metabolic profiles of energy, amino acid and lipid in patients, which might be the diagnosis and/or prognosis markers for hay fever patients.

3.
Cell Calcium ; 66: 78-89, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28807152

RESUMO

Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter-repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Cálcio/metabolismo , Dissulfetos/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Cálcio/química , Calorimetria , Capnocytophaga/metabolismo , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Mutagênese , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Alinhamento de Sequência , Trombospondinas/química
4.
Mycologia ; 108(3): 581-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26908649

RESUMO

The fungal vacuole is an organelle, which adopts pleiotropic morphologies and functions. In aging and starving hyphae it is the compartment of degradation and recycling of cellular constituents. Here we identified TSP3, one of three tetraspanins present in the filamentous ascomycete fungus Neurospora crassa, as a vacuolar membrane protein. The protein is detected only in aging and starving cultures and under other conditions, which induce autophagy, such as vegetative incompatibility or the presence of the macrolide antibiotic rapamycin. Mutant analysis revealed that TSP3 is dispensable for growth and development of the fungus under laboratory conditions. Together these findings indicate that tsp3 shares characteristics with idi (induced during incompatibility) genes and might promote vacuolar functions related to autophagy.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Neurospora crassa/metabolismo , Tetraspaninas/metabolismo , Vacúolos/metabolismo , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Tetraspaninas/genética , Vacúolos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA