Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.162
Filtrar
1.
Environ Geochem Health ; 46(8): 297, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980451

RESUMO

The radiological characterization of soil contaminated with natural radionuclides enables the classification of the area under investigation, the optimization of laboratory measurements, and informed decision-making on potential site remediation. Neural networks (NN) are emerging as a new candidate for performing these tasks as an alternative to conventional geostatistical tools such as Co-Kriging. This study demonstrates the implementation of a NN for estimating radiological values such as ambient dose equivalent (H*(10)), surface activity and activity concentrations of natural radionuclides present in a waste dump of a Cu mine with a high level of natural radionuclides. The results obtained using a NN were compared with those estimated by Co-Kriging. Both models reproduced field measurements equivalently as a function of spatial coordinates. Similarly, the deviations from the reference concentration values obtained in the output layer of the NN were smaller than the deviations obtained from the multiple regression analysis (MRA), as indicated by the results of the root mean square error. Finally, the method validation showed that the estimation of radiological parameters based on their spatial coordinates faithfully reproduced the affected area. The estimation of the activity concentrations was less accurate for both the NN and MRA; however, both methods gave statistically comparable results for activity concentrations obtained by gamma spectrometry (Student's t-test and Fisher's F-test).


Assuntos
Cobre , Mineração , Redes Neurais de Computação , Monitoramento de Radiação , Poluentes Radioativos do Solo , Cobre/análise , Poluentes Radioativos do Solo/análise , Monitoramento de Radiação/métodos , Análise de Regressão
2.
Environ Technol ; : 1-9, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962999

RESUMO

Immobilisation of uranium (U (VI)) by direct precipitation of uranyl phosphate (U-P) exhibits a great potential application in the remediation of U (VI)-contaminated environments. However, phosphorus, vital element of bacteria's decomposition, absorption and transformationmay affect the stability of U (VI) with ageing time. The main purpose of this work is to study the effect of bacteria on uranium sequestration mechanism and stability by different forms of phosphorus in a water sedimentary system. The results showed that phosphate effectively enhanced the removal of U (VI), with 99.84%. X-Ray Diffraction (XRD), Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS), and X-ray Photoelectron Spectroscopy (XPS) analyses imply that U (VI) and U (IV) co-exist on the surface of the samples. Combined with BCR results, it demonstrated that bacteria and phosphorus have a synergistic effect on the removal of U (VI), realising the immobilisation of U (VI) from a transferable phase to a stable phase. However, from a long-term perspective, the redissolution and release of uranium immobilisation of U (VI) by pure bacteria with ageing time are worthy of attention, especially in uranium mining environments rich in sensitive substances. This observation implies that the stability of the uranium may be impacted by the prevailing environmental conditions. The novel findings could provide theoretical evidence for U (VI) bio-immobilisation in U (VI)-contaminated environments.

3.
Front Microbiol ; 15: 1412599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993490

RESUMO

The generation of acid mine drainage (AMD) characterized by high acidity and elevated levels of toxic metals primarily results from the oxidation and dissolution of sulfide minerals facilitated by microbial catalysis. Although there has been significant research on microbial diversity and community composition in AMD, as well as the relationship between microbes and heavy metals, there remains a gap in understanding the microbial community structure in uranium-enriched AMD sites. In this paper, water samples with varying levels of uranium pollution were collected from an abandoned stone coal mine in Jiangxi Province, China during summer and winter, respectively. Geochemical and high-throughput sequencing analyses were conducted to characterize spatiotemporal variations in bacterial diversity and community composition along pollution groups. The results indicated that uranium was predominantly concentrated in the AMD of new pits with strong acid production capacity, reaching a peak concentration of 9,370 µg/L. This was accompanied by elevated acidity and concentrations of iron and total phosphorus, which were identified as significant drivers shaping the composition of bacterial communities, rather than fluctuations in seasonal conditions. In an extremely polluted environment (pH < 3), bacterial diversity was lowest, with a predominant presence of acidophilic iron-oxidizing bacteria (such as Ferrovum), and a portion of acidophilic heterotrophic bacteria synergistically coexisting. As pollution levels decreased, the microbial community gradually evolved to cohabitation of various pH-neutral heterotrophic species, ultimately reverting back to background level. The pH was the dominant factor determining biogeochemical release of uranium in AMD. Acidophilic and uranium-tolerant bacteria, including Ferrovum, Leptospirillum, Acidiphilium, and Metallibacterium, were identified as playing key roles in this process through mechanisms such as enhancing acid production rate and facilitating organic matter biodegradation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39007979

RESUMO

The detection of uranium in drinking water has ignited concerns among the public, regulators, and policymakers, particularly as around 1% of the 55,554 water samples in India have shown uranium levels surpassing the 60 µg/l guideline established by the Atomic Energy Regulatory Board (AERB) based on radiological toxicity. Further, the Bureau of Indian Standard (BIS), has given a limit of 30 µg/l, which is derived from World Health Organization (WHO) guidelines. Besides the chemical and radiological aspects associated with uranium, factors such as technological constraints in water purification, waste management, environmental factors, and socio-economic conditions significantly influence these guideline values, which are often overlooked. This manuscript explores the variations in approaches for establishing guideline values and highlights the uncertainties arising from dependence on various variables such as intake and usage patterns, inter- and intra-species distinctions, and epidemiological data. A critical analysis indicates that adherence to global guidelines may result in some undesirable environmental issues. By considering factors such as population dynamics, socio-economic conditions, and geological influences, we suggest that limit of 60 µg/l for uranium in drinking water is appropriate for India.

5.
Adv Sci (Weinh) ; : e2404397, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946685

RESUMO

Extraction of U(VI) in water is of great significance in energy and environmental fields. However, the traditional methods usually fail due to the indispensable extra addition of catalyst, adsorbent, precipitant, or sacrificial agents, which may lead to enhanced extraction costs and secondary pollution. Here, a new efficient uranium extraction strategy is proposed based on triboelectricity without adding a catalyst or other additives. It is found only under the friction between the microbubbles (generated under ultrasonication) and the water flow, that reactive oxygen species (ROS) can largely be generated, which thus contributes to the solidification of U(VI) from water. In addition, the magnetic field can affect the phase of the product. Under mechanical stirring, the product contains (UO2)O2·2H2O, while which contains UO2(OH)2 and (UO2)O2·4H2O under the magnetic stirring. Quenching experiments are also carried out to explore the influence of environmental factors. Most importantly, it shows great potential in the extraction of U(VI) from seawater. This work proposes a catalyst-free and light-free strategy toward the solidification of U(VI) from water, which avoids the secondary pollution of the catalyst to the environment and is low-cost, and has great potential in the real application.

6.
Chemosphere ; 363: 142742, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971441

RESUMO

Uranium (U) is a chemical and radioactive toxic contaminant affecting many groundwater systems. The focus of this study was to evaluate the suitability of forward osmosis (FO) for uranium rejection from contaminated groundwater under field-relevant conditions. Laboratory experiments with aqueous solution containing uranium were performed with FO membrane to understand the uranium rejection mechanism under varied pH, draw solution concentration, and presence of co-ions. Further, experiments were performed with U-contaminated field groundwater. Results of the hydrogeochemcial modelling using PHREEQC indicated that the rejection mechanism of uranium was highly dependent on aqueous speciation. Uranium rejection was maximum at alkaline pH with ca. 99% rejection due to charge-based interactions between membrane and dominant uranyl complexes. The results of the co-ion study indicated that nitrate and phosphate ions decrease uranium rejection. Whereas, bicarbonates, calcium, and magnesium ions concentrated uranium in feed solution. Further, the uranium adsorption onto the membrane surface primarily depended on pH of the aqueous solution with maximum adsorption at pH 5.5. Our results show that the World Health Organization's drinking water guideline value of 30 µgL-1 for U could be achieved via FO process in field groundwater containing low dissolved solids.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39044350

RESUMO

This study proposes the use of diglycolamic acid-functionalized graphitic carbon nitride (HDGA-gCN) as an adsorbent for uranium removal. Our experiments showed that at pH 6.0, HDGA-gCN had a high adsorption capacity of 263.2 mg g-1 and achieved equilibrium in 30 min. The adsorption isotherm was well-fitted by the Langmuir model, and the adsorption kinetics followed a pseudo-second-order equation. U(VI) adsorption on HDGA-gCN is due to electrostatic interactions between the amine, diglycolamic acid, and uranium species. The thermodynamic parameters indicate that adsorption is spontaneous and exothermic. The loaded U(VI) can be desorbed using 0.1 M Na2CO3, and HDGA-gCN exhibited an exceptional adsorption percentage for U(VI) compared to other coexisting ions. HDGA-gCN had faster kinetics, adsorption capacity, and reusability, making it suitable for U(VI) remediation.

8.
J Hazard Mater ; 477: 135230, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39038376

RESUMO

In some locations around the globe, the U concentrations may exceed WHO standards by 2-folds therefore, effective yet environmentally wise solutions to purify radioactive waters are of significant importance. Here, the optimized and fully controlled coal-fly-ash based Na-P1 zeolite functionalization by employing novel, biodegradable biosurfactant molecule - cocamidopropyl betaine (CAPB) is showcased. The zeolite's surface decoration renders three composites with varying amounts of introduced CAPB molecule (Na-P1 @ CAPB), with 0.44, 0.88, and 1.59-times External Cation Exchange Capacity (ECEC). Wet-chemistry experiments revealed extremely high U adsorption capacity (qmax = 137.1 mg U/g) unveiling preferential interactions of uranyl dimers with CAPB molecules coupled with ion-exchange between Na+ ions. Multimodal spectroscopic analyses, including Fourier-Transformed Infra-Red (FT-IR), X-ray Photoelectron (XPS), and X-ray Absorption Fine Structure (XAFS), showed the hexavalent oxidation state of U, and no secondary release of the CAPB molecule from the composite. The EXAFS signals fingerprint changes in the interatomic distances of adsorbed U, showing the impact of the O and N, heteroatoms present in the CAPB molecule on U binding mechanism. The presented research outcomes showcase the easy, scalable, optimized, and environmentally friendly synthesis of biofunctional zeolite effectively purifying the real-life U-bearing wastewaters from the vicinity of the Pribram deposit (Czech Republic).

9.
Small ; : e2404417, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039986

RESUMO

The photocatalytic U(VI) reduction is regarded as an effective strategy for recovering uranium. However, its application in seawater uranium extraction poses challenges due to limited reactivity in the presence of carbonate and under atmospheric conditions. In the present study, a photoactive hydrogel made of carboxyl-functionalized g-C3N4/CdS (CCN/CdS) is designed for extracting uranium. The carboxyl groups on g-C3N4 enhance the affinity toward uranyl ions while CdS facilitates the activation of dissolved oxygen. Under atmospheric conditions, the prepared hydrogel catalyst achieves over 80% reduction rate of 0.1 mM U(VI) within 150 min in the presence of carbonate, without the assistance of any electron donors. During the photocatalytic process, U(VI) is reduced to form UO2+x. The hydrogel catalyst exhibits a high uranium extraction capacity of >434.5 mg g⁻1 and the products can be effectively eluted using a 0.1 M NaCO3 solution. Furthermore, this hydrogel catalyst offers excellent stability, good recyclability, outstanding antifouling activity, and ease of separation, all of which are desirable for seawater uranium extraction. Finally, the test in real seawater demonstrates the successful extraction of uranium from seawater using the prepared hydrogel catalyst.

10.
J Contam Hydrol ; 265: 104392, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954926

RESUMO

More than 60% of worldwide uranium production is based on the In Situ Recovery mining technique. This exploitation method directly falls within the scope of the applications of reactive transport modelling to optimize uranium production and limit its associated environmental impact. We propose a modelling approach which is able to represent the natural evolution of an aquifer impacted by an ISR test performed using sulfuric acid. The model is calibrated on a 12 year-long data series obtained from 12 monitoring wells surrounding an ISR pilot cell. Through this process-based approach, we simulate the impact of several remediation strategies that can be considered in these contexts. In particular, we model the impact of Pump & Treat combined with reverse osmosis, as well as the circulation of non-impacted fluids through the reservoir with different operating strategies. Our approach allows to compare the effectiveness of these strategies. For this small-scale ISR pilot, monitored natural attenuation constitutes an interesting approach due to its faster pH recovery time with respect to Pump & Treat (5-10 years to pH ∼ 6), whose efficiency can be improved by the addition of exchangeable cations. Circulation of unimpacted fluids can reduce pH recovery times if performed for periods longer than the ISR exploitation and/or deployed with a delay. Combined with an economic evaluation of their deployment, this modelling approach can help the mining operator select and design optimal remediation strategies from an environmental and economical standpoint.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Modelos Teóricos , Urânio , Recuperação e Remediação Ambiental/métodos , Mineração , Poluentes Radioativos da Água , Ácidos Sulfúricos/química
11.
J Contam Hydrol ; 265: 104390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959822

RESUMO

Uranium mainly comes from ISL of sandstone-type uranium deposits in China. The change of porosity and permeability caused by blockage of ore-bearing strata is one of the most serious problems in acid ISL of uranium. In this paper, the groundwater tracer test was carried out before and 1 year after ISL to explore the pore and permeability evolution characteristics of the ore-bearing layer during ISL. The test results showed that the leaching solution migrated along two seepage channels and the water-bearing medium was isotropic. After 1 year of ISL, the flow rate of the leaching solution decreased obviously. However, the flow rate of the leaching solution in slower channel decreased more than that in the faster channel in all directions, which was caused by the more adequate chemical reactions between the leaching solution and the minerals of the ore-bearing layer and the more corresponding precipitation in the slower channel. In addition, the flow rate along the direction of groundwater flow decreased less than that in the direction of vertical groundwater flow. This was closely related to the transformation of aquifer medium by hydrodynamic field. Initial stage of ISL, the occurrence of plugging is closely related to the precipitation-dissolution process of iron and aluminum minerals under the change of pH, which is accompanied by the continuous precipitation of gypsum.


Assuntos
Água Subterrânea , Mineração , Urânio , Urânio/química , China , Água Subterrânea/química , Permeabilidade , Movimentos da Água , Poluentes Radioativos da Água/análise , Poluentes Radioativos da Água/química , Porosidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-38961273

RESUMO

BACKGROUND: American Indian (AI) communities are affected by uranium exposure from abandoned mines and naturally contaminated drinking water. Few studies have evaluated geographical differences across AI communities and the role of dietary exposures. OBJECTIVE: We evaluated differences in urinary uranium levels by diet and geographical area among AI participants from the Northern Plains, the Southern Plains, and the Southwest enrolled in the Strong Heart Family Study (SHFS). METHODS: We used food frequency questionnaires to determine dietary sources related to urinary uranium levels for 1,682 SHFS participants in 2001-2003. We calculated adjusted geometric mean ratios (GMRs) of urinary uranium for an interquartile range (IQR) increase in self-reported food group consumption accounting for family clustering and adjusting for sociodemographic variables and other food groups. We determined the percentage of variability in urinary uranium explained by diet. RESULTS: Median (IQR) urinary uranium levels were 0.027 (0.012, 0.057) µg/g creatinine. Urinary uranium levels were higher in Arizona (median 0.039 µg/g) and North Dakota and South Dakota (median 0.038 µg/g) and lower in Oklahoma (median 0.019 µg/g). The adjusted percent increase (95% confidence interval) of urinary uranium levels per IQR increase in reported food intake was 20% (5%, 36%) for organ meat, 11% (1%, 23%) for cereals, and 14% (1%, 29%) for alcoholic drinks. In analyses stratified by study center, the association with organ meat was specific to North Dakota and South Dakota participants. An IQR increase in consumption of fries and chips was inversely associated with urinary uranium levels -11% (-19%, -3%). Overall, we estimated that self-reported dietary exposures explained 1.71% of variability in urine uranium levels. IMPACT: Our paper provides a novel assessment of self-reported food intake and urinary uranium levels in a cohort of American Indian participants. We identify foods (organ meat, cereals, and alcohol) positively associated with urinary uranium levels, find that organ meat consumption is only associated with urine uranium in North Dakota and South Dakota, and estimate that diet explains relatively little variation in total urinary uranium concentrations. Our findings contribute meaningful data toward a more comprehensive estimation of uranium exposure among Native American communities and support the need for high-quality assessments of water and dust uranium exposures in SHFS communities.

13.
ACS Appl Bio Mater ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986048

RESUMO

Marine biofouling directly affects the performance and efficiency of uranium (U(VI)) extraction from seawater. Compared to traditional chemical methods, natural plant extracts are generally biodegradable and nontoxic, making them an environmentally friendly alternative to synthetic chemicals in solving the marine biofouling problem. The effectiveness of natural antibacterial plants (i.e., pine needle, peppermint, Acorus gramineus Soland, Cacumen platycladi, and wormwood) in solving the marine biofouling problem was evaluated in this work. Experimental results showed that natural antibacterial plants could kill Vibrio alginolyticus in solution and effectively solve the marine biofouling problem of U(VI) extraction. To improve the adsorption capacity of natural plants for U(VI) in seawater, poly(vinylphosphonic acid) (PVPA) was modified on natural antibacterial plant surfaces by irradiation grafting technology. PVPA and natural antibacterial plants work as active sites and base materials for the U(VI) extraction material, respectively. The recovery performance of PVPA/pine needle for U(VI) was preliminarily studied. Results show that the adsorption of U(VI) on PVPA/pine needle follows pseudo-second-order and Langmuir models, and the maximum adsorption capacity is 111 mg/g at 298 K and pH 8.2.

14.
Int J Biol Macromol ; 276(Pt 1): 133890, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019371

RESUMO

Based on the goal of "carbon neutralization and carbon peaking", it is still challenging to develop a high adsorption performance and environmentally friendly material for uranium extraction. We proposed a new idea of "Three-Dimensional Environmental-Friendly". A series of amino acid bis-substituted chitosan aerogels (C-1, C-2, C-3, C-4 and C-5) were prepared by ice template method and selective substitution reaction in water environment. Among them, C-3 adsorbent has the antibacterial properties of gram-positive bacteria, gram-negative bacteria and marine bacteria, which is more suitable for uranium adsorption in complex environments. Also, C-3 adsorbent solves the shortcomings of poor adsorption property and easy to cause secondary pollution during modification of traditional chitosan materials. The selectivity and adsorption capacity of uranium are further improved by the unique functional groups of serine residues. At pH = 7, the maximum adsorption capacity reaches 606.32 mg/g. In addition, C-3 adsorbent have excellent selectivity and stability. The synergistic effect of coordination, electrostatic interaction and intraparticle diffusion between C-3 adsorbent and uranium may be the key to its high adsorption performance. The high performance of chitosan adsorbent provides a new idea for the design and application of green and efficient uranium adsorption materials.

15.
Sci Bull (Beijing) ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39030103

RESUMO

Exploiting the intelligent photocatalysts capable of phase separation provides a promising solution to the removal of uranium, which is expected to solve the difficulty in separation and the poor selectivity of traditional photocatalysts in carbonate-containing uranium wastewater. In this paper, the γ-FeOOH/konjac glucomannan grafted with phenolic hydroxyl groups/poly-N-isopropylacrylamide (γ-FeOOH/KGM(Ga)/PNIPAM) thermosensitive hydrogel is proposed as the photocatalysts for extracting uranium from carbonate-containing uranium wastewater. The dynamic phase transformation is demonstrated to confirm the arbitrary transition of γ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel from a dispersed state with a high specific surface area at low temperatures to a stable aggregated state at high temperatures. Notably, the γ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel achieves a remarkably high rate of 92.3% in the removal of uranium from the wastewater containing carbonates and maintains the efficiency of uranium removal from uranium mine wastewater at over 90%. Relying on electron spin resonance and free radical capture experiment, we reveal the adsorption-reduction-nucleation-crystallization mechanism of uranium on γ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel. Overall, this strategy provides a promising solution to treating uranium-contaminated wastewater, showing a massive potential in water purification.

16.
Sci Total Environ ; 946: 174406, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38964395

RESUMO

The remediation of groundwater subject to in situ leaching (ISL) for uranium mining has raised extensive concerns in uranium mill and milling. This study conducted bioremediation through biostimulation and bioaugmentation to the groundwater in an area in northern China that was contaminated due to uranium mining using the CO2 + O2 neutral ISL (NISL) technology. It identified the dominant controlling factors and mechanisms driving bioremediation. Findings indicate that microorganisms can reduce the uranium concentration in groundwater subject to NISL uranium mining to its normal level. After 120 days of bioaugmentation, the uranium concentration in the contaminated groundwater fell to 0.36 mg/L, achieving a remediation efficiency of 91.26 %. Compared with biostimulation, bioaugmentation shortened the remediation timeframe by 30 to 60 days while maintaining roughly the same remediation efficiency. For groundwater remediation using indigenous microbial inoculants, initial uranium concentration and low temperatures (below 15 °C) emerge as the dominant factors influencing the bioremediation performance and duration. In settings with high carbonate concentrations, bioremediation involved the coupling of multiple processes including bioreduction, biotransformation, biomineralization, and biosorption, with bioreduction assuming a predominant role. Post-bioremediation, the relative abundances of reducing microbes Desulfosporosinus and Sulfurospirillum in groundwater increased significantly by 10.56 % and 6.91 %, respectively, offering a sustainable, stable biological foundation for further bioremediation of groundwater.


Assuntos
Biodegradação Ambiental , Água Subterrânea , Urânio , Poluentes Radioativos da Água , Água Subterrânea/química , Urânio/metabolismo , China , Poluentes Radioativos da Água/metabolismo , Poluentes Radioativos da Água/análise , Mineração
17.
Sci Total Environ ; 948: 174867, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032753

RESUMO

Tims Branch riparian wetland located in South Carolina, USA has immobilized 94 % of the U released >50 years ago from a nuclear fuel fabrication facility. Sediment organic matter (OM) has been shown to play an important role in immobilizing U. Yet, uranium-OM-mineral interactions at the molecular scale have never been investigated at ambient concentrations. The objectives of this study were to extract, purify, and concentrate U-bound sediment OM along the stream water pathway and perform molecular characterization using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Out of 9614 identified formulas, 715 contained U. These U-containing formulas were enriched with Fe, N, and/or S compared to the total OM. Lignin-like and protein-like molecules accounted for 40 % and 19 % of the U-containing formulas, respectively. Phosphorus-containing formulas were found to exert an insignificant influence on complexing U. U-containing formulas in the 'mobile' (groundwater extractable) OM fraction had lower (reduced) nominal oxidation states of carbon (NOSC); and less aromatic moieties than OM recovered from the 'immobile' (sodium pyrophosphate extractable) OM fraction. U-containing formulas in the redox interfacial zones (stream banks) compared to those in nearby up-slope zones tended to have smaller molecular weights; lower NOSC; higher contents of COO and/or CONO functional groups; and higher abundance of Fe-containing formulas. Fe was present in 38 % of the U-containing formulas but only 20 % of the total OM formulas. It is postulated that Fe played an important role in stabilizing the structure of sedimentary OM, especially U-containing compounds. The identification for the first time of hundreds of Fe-U-OM formulas demonstrates the complexity of such system is much greater than commonly believed and numerically predicting U binding behavior in OM-rich systems may require greater use of statistical or artificial intelligence approaches rather than deterministic approaches limited to measuring metal complexation with well-defined individual analogue organic ligands.

18.
J Environ Radioact ; 278: 107469, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38889474

RESUMO

Compacted soil layers effectively prevent the migration of radon gas from uranium tailings impoundments to the nearby environment. However, surface damage caused by wet and dry cycles (WDCs) weakens this phenomenon.In order to study the effect of crack network on radon exhalation under WDCs, a homemade uranium tailing pond model was developed to carry out radon exhalation tests under five WDCs. Based on image processing and morphological methods, the area, length, mean width and fractal dimension of the drying cracks were quantitatively analyzed, and multiple linear regression was used to establish the relationship between the geometric characteristics of the cracks and the radon exhalation rate under multiple WDCs. The results suggested that the radon release rate and crack network of the uranium tailings pond gradually stabilized as the water content decreased, following rapid development in a single WDC process. The radon release rate increased continuously after each cycle, with a cumulative increase of 25.9% over 5 cycles. The radon release rate and average crack width remained consistent in size, and a binary linear regression considering width and fractal dimension could explain the changes in radon release rate after multiple WDCs.

19.
Sci Total Environ ; 942: 173755, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38851336

RESUMO

In order to realize the low-carbon development policy, the large-scale development and utilization of nuclear energy is very essential. Uranium is the key resource for nuclear industry. The extracting and recycling uranium from seawater and nuclear wastewater is necessary for secure uranium reserves, ensure energy security, control pollution and protect the environment. The novel nanomaterial MXene possesses the layered structure, high specific surface area, and modifiable surface terminal groups, which allowed it to enrich uranium. In addition, good photovoltaic and photothermal properties improves the ability to adsorb uranium. The excellent radiation resistance of the MAX phase strongly indicates the potential use of MXene as an effective uranium adsorbent. However, there are relatively few reviews on its application in uranium extraction and recovery. This review focuses on the recent advances in the use of MXene-based materials as highly efficient adsorbents for the recovery of uranium from seawater and nuclear wastewater. First, the structural, synthetic and characterization aspects of MXene materials are introduced. Subsequently, the adsorptive properties of MXene-based materials are evaluated in terms of uranium extraction recovery capability, selectivity, and reproducibility. Furthermore, the interaction mechanisms between uranium and MXene absorbers are discussed. Finally, the challenges for MXene materials in uranium adsorption applications are proposed for better design of new types of MXene-based adsorbents.

20.
Int J Biol Macromol ; 275(Pt 2): 133532, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945327

RESUMO

Uranium recovery from wastewater or seawater is important for both pollution control and uranium supply. Due to the complexity of the water body, it requires that the adsorbent should not only be highly efficient for selective adsorption but also have good antimicrobial properties. In this study, an antimicrobial thermosensitive hydrogel (UITAC) for uranium adsorption was prepared by one-step ion-imprinted polymerization using chitosan as a substrate and allyl trimethylammonium chloride as the antimicrobial modifier. UITAC showed excellent antibacterial rate against Escherichia coli and Staphylococcus aureus, being 98.8 % and 89.1 %, respectively. Endothermic and exothermic peaks respectively showed up at 36.3-38.5 °C and 30.5-34.1 °C in the DSC curves. UITAC quickly achieved its adsorption equilibrium in 30.0 min at 50 °C, pH 5.0 in the 0.8 mg/mL UO22+ solution, with an adsorption capacity of 81.2 mg/g. The adsorption capacity could remain at 80 % after 5 cycles of repeated use. UITAC showed better adsorption selectivity to UO22+ than vanadium and other metal ions, with selectivity coefficients α(UO22+/Mn+) being 1.4-10.3. The pseudo-second-order kinetics and Langmuir adsorption model had a better fit for UO22+ adsorption by UITAC. The adsorption was a spontaneous process. The Gibbs Free Energy change, enthalpy change, and entropy change at 323.2 K were - 16.0 kJ/mol, 64.3 kJ/mol, and 248.4 J/mol·K, respectively. UITAC showed high potential in practical application environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA