Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Biomolecules ; 11(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208762

RESUMO

Interactions between plant-associated fungi and their hosts are characterized by a continuous crosstalk of chemical molecules. Specialized metabolites are often produced during these associations and play important roles in the symbiosis between the plant and the fungus, as well as in the establishment of additional interactions between the symbionts and other organisms present in the niche. Serendipita indica, a root endophytic fungus from the phylum Basidiomycota, is able to colonize a wide range of plant species, conferring many benefits to its hosts. The genome of S. indica possesses only few genes predicted to be involved in specialized metabolite biosynthesis, including a putative terpenoid synthase gene (SiTPS). In our experimental setup, SiTPS expression was upregulated when the fungus colonized tomato roots compared to its expression in fungal biomass growing on synthetic medium. Heterologous expression of SiTPS in Escherichia coli showed that the produced protein catalyzes the synthesis of a few sesquiterpenoids, with the alcohol viridiflorol being the main product. To investigate the role of SiTPS in the plant-endophyte interaction, an SiTPS-over-expressing mutant line was created and assessed for its ability to colonize tomato roots. Although overexpression of SiTPS did not lead to improved fungal colonization ability, an in vitro growth-inhibition assay showed that viridiflorol has antifungal properties. Addition of viridiflorol to the culture medium inhibited the germination of spores from a phytopathogenic fungus, indicating that SiTPS and its products could provide S. indica with a competitive advantage over other plant-associated fungi during root colonization.


Assuntos
Alquil e Aril Transferases/isolamento & purificação , Basidiomycota/enzimologia , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Basidiomycota/metabolismo , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/metabolismo , Raízes de Plantas/metabolismo , Simbiose/genética , Terpenos/química , Terpenos/metabolismo
2.
Chembiochem ; 21(20): 2931-2938, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32495977

RESUMO

Comprehensive functional analyses of E-isoprenyl diphosphate synthases (E-IDSs) from nonpathogenic Mycobacterium vanbaalenii have been performed. Mv0992 and Mv1577 represent a nonaprenyl diphosphate (E-C45 ) synthase and a geranylgeranyl diphosphate (E-C20 ) synthase, respectively. Although Mv3536 was identified as an E-C20 synthase using a single enzyme, co-incubation of Mv3536 and Z-IDSs (Mv4662 and Mv3822) strongly suggested it releases an intermediate geranyl diphosphate (E-C10 ) during a continuous condensation reaction. Mv0992 and Mv3536 functions differed from those of the previously reported pathogenic Mycobacterium tuberculosis homologues Rv0562 and Rv2173, respectively. Re-analysis of Rv0562 and Rv2173 demonstrated that their functions were similar to those of Mv0992 and Mv3536 (Rv0562: E-C45 synthase; Rv2173: E-C10-15 synthase). The newly proposed functions of Rv0562 and Rv2173 would be in the biosynthesis of menaquinone and glycosyl carrier lipids essential for growth. Furthermore, a reduced allylic diphosphate could be used as the Z-IDS of the Mv3822 substrate, thereby introducing a potentially novel pathway of cyclic sesquarterpene biosynthesis.


Assuntos
Alquil e Aril Transferases/metabolismo , Mycobacteriaceae/enzimologia , Mycobacterium tuberculosis/enzimologia , Terpenos/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Estrutura Molecular , Terpenos/química
3.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 1): 40-46, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929185

RESUMO

Direct soaking of protein crystals with small-molecule fragments grouped into complementary clusters is a useful technique when assessing the potential of a new crystal system to support structure-guided drug discovery. It provides a robustness check prior to any extensive crystal screening, a double check for assay binding cutoffs and structural data for binding pockets that may or may not be picked out in assay measurements. The structural output from this technique for three novel fragment molecules identified to bind to the antibacterial target Acinetobacter baumannii undecaprenyl pyrophosphate synthase are reported, and the different physicochemical requirements of a successful antibiotic are compared with traditional medicines.


Assuntos
Acinetobacter baumannii/enzimologia , Alquil e Aril Transferases/química , Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Descoberta de Drogas , Alquil e Aril Transferases/isolamento & purificação , Antibacterianos/química , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Cristalização , Escherichia coli , Expressão Gênica/genética , Modelos Moleculares , Conformação Proteica , Difração de Raios X
4.
J Org Chem ; 84(9): 4971-4991, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30977652

RESUMO

Despite numerous advances in spectroscopic methods through the latter part of the 20th century, the unequivocal structure determination of natural products can remain challenging, and inevitably, incorrect structures appear in the literature. Computational methods that allow the accurate prediction of NMR chemical shifts have emerged as a powerful addition to the toolbox of methods available for the structure determination of small organic molecules. Herein, we report the structure determination of a small, stereochemically rich natural product from Laurencia majuscula using the powerful combination of computational methods and total synthesis, along with the structure confirmation of notoryne, using the same approach. Additionally, we synthesized three further diastereomers of the L. majuscula enyne and have demonstrated that computations are able to distinguish each of the four synthetic diastereomers from the 32 possible diastereomers of the natural product. Key to the success of this work is to analyze the computational data to provide the greatest distinction between each diastereomer, by identifying chemical shifts that are most sensitive to changes in relative stereochemistry. The success of the computational methods in the structure determination of stereochemically rich, flexible organic molecules will allow all involved in structure determination to use these methods with confidence.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/síntese química , Alcinos/química , Laurencia/química , Alquil e Aril Transferases/isolamento & purificação , Técnicas de Química Sintética , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
5.
Biol Chem ; 400(3): 367-381, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30763032

RESUMO

For evolutionary studies, but also for protein engineering, ancestral sequence reconstruction (ASR) has become an indispensable tool. The first step of every ASR protocol is the preparation of a representative sequence set containing at most a few hundred recent homologs whose composition determines decisively the outcome of a reconstruction. A common approach for sequence selection consists of several rounds of manual recompilation that is driven by embedded phylogenetic analyses of the varied sequence sets. For ASR of a geranylgeranylglyceryl phosphate synthase, we additionally utilized FitSS4ASR, which replaces this time-consuming protocol with an efficient and more rational approach. FitSS4ASR applies orthogonal filters to a set of homologs to eliminate outlier sequences and those bearing only a weak phylogenetic signal. To demonstrate the usefulness of FitSS4ASR, we determined experimentally the oligomerization state of eight predecessors, which is a delicate and taxon-specific property. Corresponding ancestors deduced in a manual approach and by means of FitSS4ASR had the same dimeric or hexameric conformation; this concordance testifies to the efficiency of FitSS4ASR for sequence selection. FitSS4ASR-based results of two other ASR experiments were added to the Supporting Information. Program and documentation are available at https://gitlab.bioinf.ur.de/hek61586/FitSS4ASR.


Assuntos
Alquil e Aril Transferases/genética , Software , Alquil e Aril Transferases/isolamento & purificação , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Evolução Molecular , Filogenia , Engenharia de Proteínas , Fatores de Tempo
6.
J Biosci Bioeng ; 127(2): 138-144, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30190176

RESUMO

The bio-production process of isoprene, an essential chemical used in industry, is strongly limited by isoprene synthase. In our previous work, relatively high isoprene production was observed with isoprene synthase from Ipomoea batatas (IspSib). In this work the biochemical properties of IspSib were analyzed and compared with those of isoprene synthase from Populus alba (IspSpa) and other species. Firstly, IspSib and IspSpa were expressed, purified, and identified by SDS-PAGE and western blot analysis. Secondly, pH and temperature dependence of IspSib were performed and an optimum pH of 8.6 and an optimum temperature of 42 °C were resulted. Mg2+ with optimum concentration of 56 mM was proved to be needed for enzyme activation. In addition, in vivo and in vitro study of the thermostabilities of IspSib and IspSpa were performed. The enzyme activity of IspSib and IspSpa dropped very rapidly after incubation at 30 °C; almost 80% enzyme activity of IspSib was lost after 20 min of incubation. Moreover, the Michaelis-Menten constant was measured. IspSib showed a lower Km, 0.2 mM, and a higher kcat, 0.37 s-1, as compared with IspSpa. The high catalytic efficiency, which was reflected by the high kcat/Km ratio, indicates that IspSib is a good candidate for the bio-isoprene production, while its thermal instability remains as a challenge. Enzyme engineering efforts, such as direction evolution or semi-rational evolution, are planned for further research.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Ipomoea batatas/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Butadienos/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli , Íons Pesados , Hemiterpenos/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Cinética , Magnésio/química , Magnésio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
7.
J Oleo Sci ; 67(10): 1235-1246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305556

RESUMO

Terpene synthase (TPS) genes were isolated and functionally characterized from three traditional edible plants, Acanthopanax sciadophylloides ("Koshiabura") and Acanthopanax sieboldianus ("Himeukogi"), belonging to the family Araliaceae, and Curcuma zedoaria (zedoary, "Gajutsu"), belonging to the family Zingiberaceae. These plants emit characteristic fragrances and are used for traditional foods and folk medicines. From their fragrant tissues, i.e., sprouts of Araliaceae plants and developing rhizomes of zedoary, total RNAs were extracted and reverse transcribed. The resultant cDNAs were used for degenerate PCR followed by rapid amplification of cDNA ends. From the contig sequences obtained, full-length Tps genes were amplified by PCR with newly synthesized primer sets. The isolated full-length genes were introduced into engineered Escherichia coli cells, which can utilize acetoacetate to synthesize farnesyl diphosphate, the substrate for TPSs, through the mevalonate pathway. TPS products synthesized in the transformed E. coli cells were analysed by gas chromatography-mass spectrometry, nuclear magnetic resonance, and optical rotation. Consequently, the isolated Tps genes were found to encode ß-caryophyllene synthase, germacrene D synthase, linalool/(3S)-(+)-nerolidol synthase, ß-eudesmol synthase, and germacrene B synthase. These results lead us to expect that some of the effective ingredients in folk medicines are volatile terpenes and that intake of traditional foods including these edible plants would have some positive effects on our health.


Assuntos
Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Curcuma/enzimologia , Curcuma/genética , Eleutherococcus/enzimologia , Eleutherococcus/genética , Plantas Comestíveis/enzimologia , Plantas Comestíveis/genética , Acetoacetatos/metabolismo , Curcuma/química , DNA Complementar , Eleutherococcus/química , Escherichia coli/metabolismo , Ácido Mevalônico/metabolismo , Plantas Comestíveis/química , Fosfatos de Poli-Isoprenil/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/isolamento & purificação , Sesquiterpenos/metabolismo , Terpenos , Compostos Orgânicos Voláteis
8.
Methods Enzymol ; 606: 179-198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097092

RESUMO

Aminofutalosine synthase (MqnE) is a radical SAM enzyme involved in the futalosine-dependent menaquinone biosynthetic pathway. Its ability to add the 5'-deoxyadenosyl radical to the substrate-rather than abstract a hydrogen atom-and to catalyze radical addition to a stable benzene ring gives it a unique place in the radical SAM superfamily and required the development of new strategies for trapping radical intermediates. This chapter describes the methodologies used for enzyme overexpression, purification, and in vitro reconstitution. We also describe the development of fast, radical triggered, carbon-halogen bond fragmentation reactions for the trapping of intermediates. We anticipate that these methods will be of general use in the study of other transient enzymatic radicals.


Assuntos
Alquil e Aril Transferases/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Ensaios Enzimáticos/métodos , Nucleosídeos/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Vias Biossintéticas , Clonagem Molecular/métodos , Radicais Livres/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Thermus thermophilus/metabolismo , Vitamina K 2/metabolismo
9.
Methods Enzymol ; 606: 439-460, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097102

RESUMO

Radical S-adenosylmethionine (RaS) enzymes catalyze some of the most fascinating transformations in Nature. With only ~100 of the >300,000 members studied to date, it is safe to assume that a plethora of new reactions and reaction mechanisms remain to be elucidated. It is by now relatively easy to spot RaS enzymes in microbial genomes. However, to determine the reactions that they carry out, detailed structural characterization of the product(s) is necessary, a process that still represents a significant roadblock in the study of RaS enzymes. We have recently combined natural products structural elucidation along with RaS enzymology to provide a proof of concept for how the confluence of these approaches can lead to the discovery of new natural products and RaS enzyme-mediated transformations. Herein, we provide guidelines for expressing, purifying, and reconstituting a subclass of RaS enzymes that contain a so-called SPASM domain, as well as characterizing the reactions that they catalyze using a combination of HR/MSn and NMR investigations. Application of these approaches will aid in expanding the chemical and biosynthetic repertoire of RaS enzymes in the future.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Ensaios Enzimáticos/normas , Peptídeos/metabolismo , Alquil e Aril Transferases/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Ensaios Enzimáticos/métodos , Guias como Assunto , Família Multigênica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , S-Adenosilmetionina/metabolismo
10.
Methods Enzymol ; 606: 421-438, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097101

RESUMO

Diphthamide is a unique posttranslational modification on translation elongation factor 2 (EF2) in archaea and eukaryotes. Biosynthesis of diphthamide was proposed to involve four steps. The first step is a CC bond forming reaction catalyzed by unique radical S-adenosylmethionine (SAM) enzymes. Classical radical SAM enzymes use SAM and [4Fe-4S] clusters to generate a 5'-deoxyadenynal radical and catalyze numerous reactions. Radical SAM enzymes in diphthamide biosynthesis cleave a different CS bond in SAM to generate a 3-amino-3-carboxypropyl radical and modify a histidine residue of substrate protein EF2. Here, we describe our investigations on these unique radical SAM enzymes, including the preparation, characterization, and activity assays we have developed.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/metabolismo , Ensaios Enzimáticos/métodos , Histidina/análogos & derivados , S-Adenosilmetionina/metabolismo , Alquil e Aril Transferases/isolamento & purificação , Proteínas Arqueais/isolamento & purificação , Histidina/biossíntese , Fator 2 de Elongação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Pyrococcus horikoshii
11.
Methods Enzymol ; 606: 461-483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097103

RESUMO

Methanogenic archaea represent a source of unique and fascinating anaerobic biochemistry that includes the involvement of many radical S-adenosyl-l-methionine (SAM) enzymes, some of which have well-established functions, while the majority have currently unknown or only partially understood functions. Here, we describe our strategy for the identification of the radical SAM enzyme that catalyzes the two methylation reactions in methanopterin biosynthesis in Methanocaldococcus jannaschii. Additionally, we describe the similar strategy carried out for the identification of the two radical SAM enzymes required for the biosynthesis of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F0) moiety of coenzyme F420 in M. jannaschii. This approach can be employed for future functional identification of radical SAM enzymes with currently unknown functions.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/metabolismo , Ensaios Enzimáticos/métodos , Pterinas/metabolismo , Riboflavina/análogos & derivados , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Clonagem Molecular , Methanocaldococcus/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Riboflavina/biossíntese , Riboflavina/metabolismo , S-Adenosilmetionina/metabolismo
12.
BMC Plant Biol ; 18(1): 118, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29902970

RESUMO

BACKGROUND: Isoprene is a five-carbon chemical that is an important starting material for the synthesis of rubber, elastomers, and medicines. Although many plants produce huge amounts of isoprene, it is very difficult to obtain isoprene directly from plants because of its high volatility and increasing environmental regulations. Over the last decade, microorganisms have emerged as a promising alternative host for efficient and sustainable bioisoprene production. Isoprene synthase (IspS) has received much attention for the conversion of isoprene from dimethylallyl diphosphate (DMAPP). Herein, we isolated a highly expressible novel IspS gene from Metrosideros polymorpha (MpIspS), which was cloned and expressed in Escherichia coli, using a plant cDNA library and characterized its molecular and biochemical properties. RESULTS: The signal sequence deleted MpIspS was cloned and expressed in E. coli as a 65-kDa monomer. The maximal activity of the purified MpIspS was observed at pH 6.0 and 55 °C in the presence of 5 mM Mn2+. The Km, kcat, and kcat/Km for DMAPP as a substrate were 8.11 mM, 21 min- 1, and 2.59 mM- 1 min- 1, respectively. MpIspS was expressed along with the exogenous mevalonate pathway to produce isoprene in E. coli. The engineered cells produced isoprene concentrations of up to 23.3 mg/L using glycerol as the main carbon source. CONCLUSION: MpIspS was expressed in large amounts in E. coli, which led to increased enzymatic activity and resulted in isoprene production in vivo. These results demonstrate a new IspS enzyme that is useful as a key biocatalyst for bioisoprene production in engineered microbes.


Assuntos
Alquil e Aril Transferases/genética , Myrtaceae/enzimologia , Proteínas de Plantas/genética , Alquil e Aril Transferases/isolamento & purificação , Alquil e Aril Transferases/metabolismo , Butadienos/metabolismo , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Genes de Plantas/genética , Hemiterpenos/metabolismo , Microrganismos Geneticamente Modificados , Myrtaceae/genética , Filogenia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
13.
Chembiochem ; 19(17): 1834-1838, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29802753

RESUMO

Terpene synthases catalyse the first step in the conversion of prenyl diphosphates to terpenoids. They act as templates for their substrates to generate a reactive conformation, from which a Mg2+ -dependent reaction creates a carbocation-PPi ion pair that undergoes a series of rearrangements and (de)protonations to give the final terpene product. This tight conformational control was exploited for the (R)-germacrene A synthase- and germacradien-4-ol synthase-catalysed formation of a medium-sized cyclic terpenoid ether from substrates containing nucleophilic functional groups. Farnesyl diphosphate analogues with a 10,11-epoxide or an allylic alcohol were efficiently converted to a 11-membered cyclic terpenoid ether that was characterised by HRMS and NMR spectroscopic analyses. Further experiments showed that other sesquiterpene synthases, including aristolochene synthase, δ-cadinene synthase and amorphadiene synthase, yielded this novel terpenoid from the same substrate analogues. This work illustrates the potential of terpene synthases for the efficient generation of structurally and functionally novel medium-sized terpene ethers.


Assuntos
Alquil e Aril Transferases/química , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/síntese química , Alquil e Aril Transferases/isolamento & purificação , Biocatálise , Ciclização , Escherichia coli/genética , Conformação Molecular , Sesquiterpenos/química , Solidago/enzimologia , Estereoisomerismo
14.
BMC Plant Biol ; 17(1): 160, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978322

RESUMO

BACKGROUND: Terpene rich leaves are a characteristic of Myrtaceae. There is significant qualitative variation in the terpene profile of plants within a single species, which is observable as "chemotypes". Understanding the molecular basis of chemotypic variation will help explain how such variation is maintained in natural populations as well as allowing focussed breeding for those terpenes sought by industry. The leaves of the medicinal tea tree, Melaleuca alternifolia, are used to produce terpinen-4-ol rich tea tree oil, but there are six naturally occurring chemotypes; three cardinal chemotypes (dominated by terpinen-4-ol, terpinolene and 1,8-cineole, respectively) and three intermediates. It has been predicted that three distinct terpene synthases could be responsible for the maintenance of chemotypic variation in this species. RESULTS: We isolated and characterised the most abundant terpene synthases (TPSs) from the three cardinal chemotypes of M. alternifolia. Functional characterisation of these enzymes shows that they produce the dominant compounds in the foliar terpene profile of all six chemotypes. Using RNA-Seq, we investigated the expression of these and 24 additional putative terpene synthases in young leaves of all six chemotypes of M. alternifolia. CONCLUSIONS: Despite contributing to the variation patterns observed, variation in gene expression of the three TPS genes is not enough to explain all variation for the maintenance of chemotypes. Other candidate terpene synthases as well as other levels of regulation must also be involved. The results of this study provide novel insights into the complexity of terpene biosynthesis in natural populations of a non-model organism.


Assuntos
Alquil e Aril Transferases/metabolismo , Melaleuca/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Monoterpenos Cicloexânicos , Cicloexanóis/metabolismo , DNA de Plantas , Eucaliptol , Perfilação da Expressão Gênica , Genes de Plantas , Melaleuca/química , Melaleuca/genética , Monoterpenos/metabolismo , Análise de Sequência de DNA , Terpenos/metabolismo , Árvores/química , Árvores/enzimologia
15.
J Vis Exp ; (126)2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28809830

RESUMO

Prenyltransferases (PT) are a group of enzymes that catalyze chain elongation of allylic diphosphate using isopentenyl diphosphate (IPP) via multiple condensation reactions. DHDDS (dehydrodolichyl diphosphate synthase) is a eukaryotic long-chain cis-PT (forming cis double bonds from the condensation reaction) that catalyzes chain elongation of farnesyl diphosphate (FPP, an allylic diphosphate) via multiple condensations with isopentenyl diphosphate (IPP). DHDDS is of biomedical importance, as a non-conservative mutation (K42E) in the enzyme results in retinitis pigmentosa, ultimately leading to blindness. Therefore, the present protocol was developed in order to acquire large quantities of purified DHDDS, suitable for mechanistic studies. Here, the usage of protein fusion, optimized culture conditions and codon-optimization were used to allow the overexpression and purification of functionally active human DHDDS in E. coli. The described protocol is simple, cost-effective and time sparing. The homology of cis-PT among different species suggests that this protocol may be applied for other eukaryotic cis-PT as well, such as those involved in natural rubber synthesis.


Assuntos
Alquil e Aril Transferases/isolamento & purificação , Escherichia coli/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/isolamento & purificação , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Cromatografia em Gel/métodos , Clonagem Molecular/métodos , Códon , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transferases/genética , Transferases/metabolismo
16.
Protein Expr Purif ; 132: 138-142, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167250

RESUMO

Protein asparagine (N)-linked glycosylation is a post-translational modification that occurs in the endoplasmic reticulum; it plays an important role in protein folding, oligomerization, quality control, sorting, and transport. Accordingly, disorders of glycosylation may affect practically every organ system. Dehydrodolichyl diphosphate synthase (DHDDS) is an eukaryotic cis prenyltransferase (cis-PT) that catalyzes chain elongation of farnesyl diphosphate via multiple condensations with isopentenyl diphosphate to form dehydrodolichyl diphosphate, a precursor for the glycosyl carrier dolichylpyrophophate involved in N-linked glycosylation. Mutations in DHDDS were shown to result in retinitis pigmentosa, ultimately leading to blindness, but the exact molecular mechanism by which the mutations affect DHDDS function remains elusive. In addition, bacterial cis-PT homologs are involved in bacterial wall synthesis and are therefore potential targets for new antibacterial agents. However, as eukaryotic cis-PT were not thoroughly characterized structurally and functionally, rational design of prokaryotic cis-PT specific drugs is currently impossible. Here, we present a simple protocol for purification of functionally active human DHDDS under non-denaturating conditions using a codon-optimized construct. The purified protein forms a stable homodimer, similar to its bacterial homologs, and shows time- and substrate-dependent activity. Purification of this protein requires the presence of a detergent for protein solubility. The protocol described here may be utilized for the overexpression of other eukaryotic cis-PT. Future structural and functional studies of the recombinant DHDDS may shed light on the mechanisms underlying DHDDS-related retinitis pigmentosa and lead to novel therapeutic approaches.


Assuntos
Alquil e Aril Transferases , Escherichia coli/metabolismo , Multimerização Proteica , Alquil e Aril Transferases/biossíntese , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Escherichia coli/genética , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
17.
Plant J ; 89(1): 141-154, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612091

RESUMO

Phylloquinone (PhQ), or vitamin K1 , is an essential electron carrier (A1 ) in photosystem I (PSI). In the green alga Chlamydomonas reinhardtii, which is a model organism for the study of photosynthesis, a detailed characterization of the pathway is missing with only one mutant deficient for MEND having been analyzed. We took advantage of the fact that a double reduction of plastoquinone occurs in anoxia in the A1 site in the mend mutant, interrupting photosynthetic electron transfer, to isolate four new phylloquinone-deficient mutants impaired in MENA, MENB, MENC (PHYLLO) and MENE. Compared with the wild type and complemented strains for MENB and MENE, the four men mutants grow slowly in low light and are sensitive to high light. When grown in low light they show a reduced photosynthetic electron transfer due to a specific decrease of PSI. Upon exposure to high light for a few hours, PSI becomes almost completely inactive, which leads in turn to lack of phototrophic growth. Loss of PhQ also fully prevents reactivation of photosynthesis after dark anoxia acclimation. In silico analyses allowed us to propose a PhQ biosynthesis pathway in Chlamydomonas that involves 11 enzymatic steps from chorismate located in the chloroplast and in the peroxisome.


Assuntos
Proteínas de Bactérias/genética , Chlamydomonas reinhardtii/genética , Mutação , Vitamina K 1/análogos & derivados , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Western Blotting , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/isolamento & purificação , Carbono-Carbono Liases/metabolismo , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Ácido Corísmico/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/isolamento & purificação , Coenzima A Ligases/metabolismo , Hidroliases/genética , Hidroliases/isolamento & purificação , Hidroliases/metabolismo , Luz , Peroxissomos/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Vitamina K 1/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(11): 2922-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26936952

RESUMO

Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.


Assuntos
Alquil e Aril Transferases/classificação , Besouros/enzimologia , Genes de Insetos , Proteínas de Insetos/classificação , Família Multigênica , Feromônios/biossíntese , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Sequência de Aminoácidos , Animais , Clonagem Molecular , Besouros/classificação , Besouros/genética , Evolução Molecular , Feminino , Componentes do Gene , Especiação Genética , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Masculino , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transcriptoma
19.
Phytochemistry ; 124: 29-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26880289

RESUMO

Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a ß-farnesene synthase.


Assuntos
Alquil e Aril Transferases/isolamento & purificação , Helianthus/enzimologia , Tricomas/metabolismo , Alquil e Aril Transferases/metabolismo , Helianthus/química , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo
20.
Metab Eng ; 31: 153-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26275749

RESUMO

Isoprene is a naturally produced hydrocarbon emitted into the atmosphere by green plants. It is also a constituent of synthetic rubber and a potential biofuel. Microbial production of isoprene can become a sustainable alternative to the prevailing chemical production of isoprene from petroleum. In this work, sequence homology searches were conducted to find novel isoprene synthases. Candidate sequences were functionally expressed in Escherichia coli and the desired enzymes were identified based on an isoprene production assay. The activity of three enzymes was shown for the first time: expression of the candidate genes from Ipomoea batatas, Mangifera indica, and Elaeocarpus photiniifolius resulted in isoprene formation. The Ipomoea batatas isoprene synthase produced the highest amounts of isoprene in all experiments, exceeding the isoprene levels obtained by the previously known Populus alba and Pueraria montana isoprene synthases that were studied in parallel as controls.


Assuntos
Alquil e Aril Transferases/isolamento & purificação , Escherichia coli/genética , Alquil e Aril Transferases/química , Alquil e Aril Transferases/fisiologia , Sequência de Aminoácidos , Butadienos , Genoma Bacteriano , Hemiterpenos/biossíntese , Dados de Sequência Molecular , Pentanos , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA